mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-07-31 10:52:50 +08:00
Summary: Converts the directory specified to use the Ruff formatter in pyfmt ruff_dog If this diff causes merge conflicts when rebasing, please run `hg status -n -0 --change . -I '**/*.{py,pyi}' | xargs -0 arc pyfmt` on your diff, and amend any changes before rebasing onto latest. That should help reduce or eliminate any merge conflicts. allow-large-files Reviewed By: bottler Differential Revision: D66472063 fbshipit-source-id: 35841cb397e4f8e066e2159550d2f56b403b1bef
95 lines
2.9 KiB
Python
95 lines
2.9 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
"""Create multiview data."""
|
|
|
|
import sys
|
|
from os import path
|
|
|
|
|
|
# Making sure you can run this, even if pulsar hasn't been installed yet.
|
|
sys.path.insert(0, path.join(path.dirname(__file__), "..", ".."))
|
|
|
|
|
|
def create_multiview():
|
|
"""Test multiview optimization."""
|
|
import imageio
|
|
|
|
# import cv2
|
|
# import skvideo.io
|
|
import numpy as np
|
|
import torch
|
|
from pytorch3d.renderer.points.pulsar import Renderer
|
|
from torch import nn
|
|
from torch.autograd import Variable
|
|
|
|
# Constructor.
|
|
n_points = 10
|
|
width = 1000
|
|
height = 1000
|
|
|
|
class Model(nn.Module):
|
|
"""A dummy model to test the integration into a stacked model."""
|
|
|
|
def __init__(self):
|
|
super(Model, self).__init__()
|
|
self.gamma = 0.1
|
|
self.renderer = Renderer(width, height, n_points)
|
|
|
|
def forward(self, vp, vc, vr, cam_params):
|
|
# self.gamma *= 0.995
|
|
# print("gamma: ", self.gamma)
|
|
return self.renderer.forward(vp, vc, vr, cam_params, self.gamma, 45.0)
|
|
|
|
# Generate sample data.
|
|
torch.manual_seed(1)
|
|
vert_pos = torch.rand(n_points, 3, dtype=torch.float32) * 10.0
|
|
vert_pos[:, 2] += 25.0
|
|
vert_pos[:, :2] -= 5.0
|
|
# print(vert_pos[0])
|
|
vert_col = torch.rand(n_points, 3, dtype=torch.float32)
|
|
vert_rad = torch.rand(n_points, dtype=torch.float32)
|
|
|
|
# Distortion.
|
|
# vert_pos[:, 1] += 0.5
|
|
vert_col *= 0.5
|
|
# vert_rad *= 0.7
|
|
|
|
for device in [torch.device("cuda")]:
|
|
model = Model().to(device)
|
|
vert_pos = vert_pos.to(device)
|
|
vert_col = vert_col.to(device)
|
|
vert_rad = vert_rad.to(device)
|
|
for angle_idx, angle in enumerate([-1.5, -0.8, -0.4, -0.1, 0.1, 0.4, 0.8, 1.5]):
|
|
vert_pos_v = Variable(vert_pos, requires_grad=False)
|
|
vert_col_v = Variable(vert_col, requires_grad=False)
|
|
vert_rad_v = Variable(vert_rad, requires_grad=False)
|
|
cam_params = torch.tensor(
|
|
[
|
|
np.sin(angle) * 35.0,
|
|
0.0,
|
|
30.0 - np.cos(angle) * 35.0,
|
|
0.0,
|
|
-angle,
|
|
0.0,
|
|
5.0,
|
|
2.0,
|
|
],
|
|
dtype=torch.float32,
|
|
).to(device)
|
|
cam_params_v = Variable(cam_params, requires_grad=False)
|
|
result = model.forward(vert_pos_v, vert_col_v, vert_rad_v, cam_params_v)
|
|
result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
|
|
imageio.imsave(
|
|
"reference/examples_TestRenderer_test_multiview_%d.png" % (angle_idx),
|
|
result_im,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
create_multiview()
|