mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-07-31 10:52:50 +08:00
Summary: Converts the directory specified to use the Ruff formatter in pyfmt ruff_dog If this diff causes merge conflicts when rebasing, please run `hg status -n -0 --change . -I '**/*.{py,pyi}' | xargs -0 arc pyfmt` on your diff, and amend any changes before rebasing onto latest. That should help reduce or eliminate any merge conflicts. allow-large-files Reviewed By: bottler Differential Revision: D66472063 fbshipit-source-id: 35841cb397e4f8e066e2159550d2f56b403b1bef
191 lines
6.2 KiB
Python
Executable File
191 lines
6.2 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
"""
|
|
This example demonstrates scene optimization with the PyTorch3D
|
|
pulsar interface. For this, a reference image has been pre-generated
|
|
(you can find it at `../../tests/pulsar/reference/examples_TestRenderer_test_smallopt.png`).
|
|
The scene is initialized with random spheres. Gradient-based
|
|
optimization is used to converge towards a faithful
|
|
scene representation.
|
|
"""
|
|
|
|
import logging
|
|
import math
|
|
|
|
import cv2
|
|
import imageio
|
|
import numpy as np
|
|
import torch
|
|
from pytorch3d.renderer.cameras import PerspectiveCameras
|
|
from pytorch3d.renderer.points import (
|
|
PointsRasterizationSettings,
|
|
PointsRasterizer,
|
|
PulsarPointsRenderer,
|
|
)
|
|
from pytorch3d.structures.pointclouds import Pointclouds
|
|
from torch import nn, optim
|
|
|
|
|
|
LOGGER = logging.getLogger(__name__)
|
|
N_POINTS = 10_000
|
|
WIDTH = 1_000
|
|
HEIGHT = 1_000
|
|
DEVICE = torch.device("cuda")
|
|
|
|
|
|
class SceneModel(nn.Module):
|
|
"""
|
|
A simple scene model to demonstrate use of pulsar in PyTorch modules.
|
|
|
|
The scene model is parameterized with sphere locations (vert_pos),
|
|
channel content (vert_col), radiuses (vert_rad), camera position (cam_pos),
|
|
camera rotation (cam_rot) and sensor focal length and width (cam_sensor).
|
|
|
|
The forward method of the model renders this scene description. Any
|
|
of these parameters could instead be passed as inputs to the forward
|
|
method and come from a different model.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(SceneModel, self).__init__()
|
|
self.gamma = 1.0
|
|
# Points.
|
|
torch.manual_seed(1)
|
|
vert_pos = torch.rand(N_POINTS, 3, dtype=torch.float32, device=DEVICE) * 10.0
|
|
vert_pos[:, 2] += 25.0
|
|
vert_pos[:, :2] -= 5.0
|
|
self.register_parameter("vert_pos", nn.Parameter(vert_pos, requires_grad=True))
|
|
self.register_parameter(
|
|
"vert_col",
|
|
nn.Parameter(
|
|
torch.ones(N_POINTS, 3, dtype=torch.float32, device=DEVICE) * 0.5,
|
|
requires_grad=True,
|
|
),
|
|
)
|
|
self.register_parameter(
|
|
"vert_rad",
|
|
nn.Parameter(
|
|
torch.ones(N_POINTS, dtype=torch.float32) * 0.3, requires_grad=True
|
|
),
|
|
)
|
|
self.register_buffer(
|
|
"cam_params",
|
|
torch.tensor(
|
|
[0.0, 0.0, 0.0, 0.0, math.pi, 0.0, 5.0, 2.0], dtype=torch.float32
|
|
),
|
|
)
|
|
self.cameras = PerspectiveCameras(
|
|
# The focal length must be double the size for PyTorch3D because of the NDC
|
|
# coordinates spanning a range of two - and they must be normalized by the
|
|
# sensor width (see the pulsar example). This means we need here
|
|
# 5.0 * 2.0 / 2.0 to get the equivalent results as in pulsar.
|
|
focal_length=5.0,
|
|
R=torch.eye(3, dtype=torch.float32, device=DEVICE)[None, ...],
|
|
T=torch.zeros((1, 3), dtype=torch.float32, device=DEVICE),
|
|
image_size=((HEIGHT, WIDTH),),
|
|
device=DEVICE,
|
|
)
|
|
raster_settings = PointsRasterizationSettings(
|
|
image_size=(HEIGHT, WIDTH),
|
|
radius=self.vert_rad,
|
|
)
|
|
rasterizer = PointsRasterizer(
|
|
cameras=self.cameras, raster_settings=raster_settings
|
|
)
|
|
self.renderer = PulsarPointsRenderer(rasterizer=rasterizer, n_track=32)
|
|
|
|
def forward(self):
|
|
# The Pointclouds object creates copies of it's arguments - that's why
|
|
# we have to create a new object in every forward step.
|
|
pcl = Pointclouds(
|
|
points=self.vert_pos[None, ...], features=self.vert_col[None, ...]
|
|
)
|
|
return self.renderer(
|
|
pcl,
|
|
gamma=(self.gamma,),
|
|
zfar=(45.0,),
|
|
znear=(1.0,),
|
|
radius_world=True,
|
|
bg_col=torch.ones((3,), dtype=torch.float32, device=DEVICE),
|
|
)[0]
|
|
|
|
|
|
def cli():
|
|
"""
|
|
Scene optimization example using pulsar and the unified PyTorch3D interface.
|
|
"""
|
|
LOGGER.info("Loading reference...")
|
|
# Load reference.
|
|
ref = (
|
|
torch.from_numpy(
|
|
imageio.imread(
|
|
"../../tests/pulsar/reference/examples_TestRenderer_test_smallopt.png"
|
|
)[:, ::-1, :].copy()
|
|
).to(torch.float32)
|
|
/ 255.0
|
|
).to(DEVICE)
|
|
# Set up model.
|
|
model = SceneModel().to(DEVICE)
|
|
# Optimizer.
|
|
optimizer = optim.SGD(
|
|
[
|
|
{"params": [model.vert_col], "lr": 1e0},
|
|
{"params": [model.vert_rad], "lr": 5e-3},
|
|
{"params": [model.vert_pos], "lr": 1e-2},
|
|
]
|
|
)
|
|
LOGGER.info("Optimizing...")
|
|
# Optimize.
|
|
for i in range(500):
|
|
optimizer.zero_grad()
|
|
result = model()
|
|
# Visualize.
|
|
result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
|
|
cv2.imshow("opt", result_im[:, :, ::-1])
|
|
overlay_img = np.ascontiguousarray(
|
|
((result * 0.5 + ref * 0.5).cpu().detach().numpy() * 255).astype(np.uint8)[
|
|
:, :, ::-1
|
|
]
|
|
)
|
|
overlay_img = cv2.putText(
|
|
overlay_img,
|
|
"Step %d" % (i),
|
|
(10, 40),
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
1,
|
|
(0, 0, 0),
|
|
2,
|
|
cv2.LINE_AA,
|
|
False,
|
|
)
|
|
cv2.imshow("overlay", overlay_img)
|
|
cv2.waitKey(1)
|
|
# Update.
|
|
loss = ((result - ref) ** 2).sum()
|
|
LOGGER.info("loss %d: %f", i, loss.item())
|
|
loss.backward()
|
|
optimizer.step()
|
|
# Cleanup.
|
|
with torch.no_grad():
|
|
model.vert_col.data = torch.clamp(model.vert_col.data, 0.0, 1.0)
|
|
# Remove points.
|
|
model.vert_pos.data[model.vert_rad < 0.001, :] = -1000.0
|
|
model.vert_rad.data[model.vert_rad < 0.001] = 0.0001
|
|
vd = (
|
|
(model.vert_col - torch.ones(3, dtype=torch.float32).to(DEVICE))
|
|
.abs()
|
|
.sum(dim=1)
|
|
)
|
|
model.vert_pos.data[vd <= 0.2] = -1000.0
|
|
LOGGER.info("Done.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
logging.basicConfig(level=logging.INFO)
|
|
cli()
|