pytorch3d/docs/examples/pulsar_basic_unified.py
Thomas Polasek 055ab3a2e3 Convert directory fbcode/vision to use the Ruff Formatter
Summary:
Converts the directory specified to use the Ruff formatter in pyfmt

ruff_dog

If this diff causes merge conflicts when rebasing, please run
`hg status -n -0 --change . -I '**/*.{py,pyi}' | xargs -0 arc pyfmt`
on your diff, and amend any changes before rebasing onto latest.
That should help reduce or eliminate any merge conflicts.

allow-large-files

Reviewed By: bottler

Differential Revision: D66472063

fbshipit-source-id: 35841cb397e4f8e066e2159550d2f56b403b1bef
2024-11-26 02:38:20 -08:00

91 lines
3.0 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
"""
This example demonstrates the most trivial use of the pulsar PyTorch3D
interface for sphere renderering. It renders and saves an image with
10 random spheres.
Output: basic-pt3d.png.
"""
import logging
from os import path
import imageio
import torch
from pytorch3d.renderer import (
PerspectiveCameras,
PointsRasterizationSettings,
PointsRasterizer,
PulsarPointsRenderer,
)
from pytorch3d.structures import Pointclouds
LOGGER = logging.getLogger(__name__)
def cli():
"""
Basic example for the pulsar sphere renderer using the PyTorch3D interface.
Writes to `basic-pt3d.png`.
"""
LOGGER.info("Rendering on GPU...")
torch.manual_seed(1)
n_points = 10
width = 1_000
height = 1_000
device = torch.device("cuda")
# Generate sample data.
vert_pos = torch.rand(n_points, 3, dtype=torch.float32, device=device) * 10.0
vert_pos[:, 2] += 25.0
vert_pos[:, :2] -= 5.0
vert_col = torch.rand(n_points, 3, dtype=torch.float32, device=device)
pcl = Pointclouds(points=vert_pos[None, ...], features=vert_col[None, ...])
# Alternatively, you can also use the look_at_view_transform to get R and T:
# R, T = look_at_view_transform(
# dist=30.0, elev=0.0, azim=180.0, at=((0.0, 0.0, 30.0),), up=((0, 1, 0),),
# )
cameras = PerspectiveCameras(
# The focal length must be double the size for PyTorch3D because of the NDC
# coordinates spanning a range of two - and they must be normalized by the
# sensor width (see the pulsar example). This means we need here
# 5.0 * 2.0 / 2.0 to get the equivalent results as in pulsar.
focal_length=(5.0 * 2.0 / 2.0,),
R=torch.eye(3, dtype=torch.float32, device=device)[None, ...],
T=torch.zeros((1, 3), dtype=torch.float32, device=device),
image_size=((height, width),),
device=device,
)
vert_rad = torch.rand(n_points, dtype=torch.float32, device=device)
raster_settings = PointsRasterizationSettings(
image_size=(height, width),
radius=vert_rad,
)
rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings)
renderer = PulsarPointsRenderer(rasterizer=rasterizer).to(device)
# Render.
image = renderer(
pcl,
gamma=(1.0e-1,), # Renderer blending parameter gamma, in [1., 1e-5].
znear=(1.0,),
zfar=(45.0,),
radius_world=True,
bg_col=torch.ones((3,), dtype=torch.float32, device=device),
)[0]
LOGGER.info("Writing image to `%s`.", path.abspath("basic-pt3d.png"))
imageio.imsave(
"basic-pt3d.png", (image.cpu().detach() * 255.0).to(torch.uint8).numpy()
)
LOGGER.info("Done.")
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
cli()