pytorch3d/docs/examples/pulsar_basic.py
Christoph Lassner 039e02601d examples and docs.
Summary: This diff updates the documentation and tutorials with information about the new pulsar backend. For more information about the pulsar backend, see the release notes and the paper (https://arxiv.org/abs/2004.07484). For information on how to use the backend, see the point cloud rendering notebook and the examples in the folder docs/examples.

Reviewed By: nikhilaravi

Differential Revision: D24498129

fbshipit-source-id: e312b0169a72b13590df6e4db36bfe6190d742f9
2020-11-03 13:06:35 -08:00

56 lines
1.7 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""
This example demonstrates the most trivial, direct interface of the pulsar
sphere renderer. It renders and saves an image with 10 random spheres.
Output: basic.png.
"""
import math
from os import path
import imageio
import torch
from pytorch3d.renderer.points.pulsar import Renderer
torch.manual_seed(1)
n_points = 10
width = 1_000
height = 1_000
device = torch.device("cuda")
# The PyTorch3D system is right handed; in pulsar you can choose the handedness.
# For easy reproducibility we use a right handed coordinate system here.
renderer = Renderer(width, height, n_points, right_handed_system=True).to(device)
# Generate sample data.
vert_pos = torch.rand(n_points, 3, dtype=torch.float32, device=device) * 10.0
vert_pos[:, 2] += 25.0
vert_pos[:, :2] -= 5.0
vert_col = torch.rand(n_points, 3, dtype=torch.float32, device=device)
vert_rad = torch.rand(n_points, dtype=torch.float32, device=device)
cam_params = torch.tensor(
[
0.0,
0.0,
0.0, # Position 0, 0, 0 (x, y, z).
0.0,
math.pi, # Because of the right handed system, the camera must look 'back'.
0.0, # Rotation 0, 0, 0 (in axis-angle format).
5.0, # Focal length in world size.
2.0, # Sensor size in world size.
],
dtype=torch.float32,
device=device,
)
# Render.
image = renderer(
vert_pos,
vert_col,
vert_rad,
cam_params,
1.0e-1, # Renderer blending parameter gamma, in [1., 1e-5].
45.0, # Maximum depth.
)
print("Writing image to `%s`." % (path.abspath("basic.png")))
imageio.imsave("basic.png", (image.cpu().detach() * 255.0).to(torch.uint8).numpy())