mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-07-31 10:52:50 +08:00
Summary: Formats the covered files with pyfmt. paintitblack Reviewed By: aleivag Differential Revision: D54447727 fbshipit-source-id: 8844b1caa08de94d04ac4df3c768dbf8c865fd2f
195 lines
7.0 KiB
Python
195 lines
7.0 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from pytorch3d.ops.vert_align import vert_align
|
|
from pytorch3d.structures.meshes import Meshes
|
|
from pytorch3d.structures.pointclouds import Pointclouds
|
|
|
|
from .common_testing import TestCaseMixin
|
|
|
|
|
|
class TestVertAlign(TestCaseMixin, unittest.TestCase):
|
|
@staticmethod
|
|
def vert_align_naive(
|
|
feats, verts, return_packed: bool = False, align_corners: bool = True
|
|
):
|
|
"""
|
|
Naive implementation of vert_align.
|
|
"""
|
|
if torch.is_tensor(feats):
|
|
feats = [feats]
|
|
N = feats[0].shape[0]
|
|
|
|
out_feats = []
|
|
# sample every example in the batch separately
|
|
for i in range(N):
|
|
out_i_feats = []
|
|
for feat in feats:
|
|
feats_i = feat[i][None, :, :, :] # (1, C, H, W)
|
|
if torch.is_tensor(verts):
|
|
grid = verts[i][None, None, :, :2] # (1, 1, V, 2)
|
|
elif hasattr(verts, "verts_list"):
|
|
grid = verts.verts_list()[i][None, None, :, :2] # (1, 1, V, 2)
|
|
elif hasattr(verts, "points_list"):
|
|
grid = verts.points_list()[i][None, None, :, :2] # (1, 1, V, 2)
|
|
else:
|
|
raise ValueError("verts_or_meshes is invalid")
|
|
feat_sampled_i = F.grid_sample(
|
|
feats_i,
|
|
grid,
|
|
mode="bilinear",
|
|
padding_mode="zeros",
|
|
align_corners=align_corners,
|
|
) # (1, C, 1, V)
|
|
feat_sampled_i = feat_sampled_i.squeeze(2).squeeze(0) # (C, V)
|
|
feat_sampled_i = feat_sampled_i.transpose(1, 0) # (V, C)
|
|
out_i_feats.append(feat_sampled_i)
|
|
out_i_feats = torch.cat(out_i_feats, 1) # (V, sum(C))
|
|
out_feats.append(out_i_feats)
|
|
|
|
if return_packed:
|
|
out_feats = torch.cat(out_feats, 0) # (sum(V), sum(C))
|
|
else:
|
|
out_feats = torch.stack(out_feats, 0) # (N, V, sum(C))
|
|
return out_feats
|
|
|
|
@staticmethod
|
|
def init_meshes(
|
|
num_meshes: int = 10, num_verts: int = 1000, num_faces: int = 3000
|
|
) -> Meshes:
|
|
device = torch.device("cuda:0")
|
|
verts_list = []
|
|
faces_list = []
|
|
for _ in range(num_meshes):
|
|
verts = (
|
|
torch.rand((num_verts, 3), dtype=torch.float32, device=device) * 2.0
|
|
- 1.0
|
|
) # verts in the space of [-1, 1]
|
|
faces = torch.randint(
|
|
num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
|
|
)
|
|
verts_list.append(verts)
|
|
faces_list.append(faces)
|
|
meshes = Meshes(verts_list, faces_list)
|
|
|
|
return meshes
|
|
|
|
@staticmethod
|
|
def init_pointclouds(num_clouds: int = 10, num_points: int = 1000) -> Pointclouds:
|
|
device = torch.device("cuda:0")
|
|
points_list = []
|
|
for _ in range(num_clouds):
|
|
points = (
|
|
torch.rand((num_points, 3), dtype=torch.float32, device=device) * 2.0
|
|
- 1.0
|
|
) # points in the space of [-1, 1]
|
|
points_list.append(points)
|
|
pointclouds = Pointclouds(points=points_list)
|
|
|
|
return pointclouds
|
|
|
|
@staticmethod
|
|
def init_feats(batch_size: int = 10, num_channels: int = 256, device: str = "cuda"):
|
|
H, W = [14, 28], [14, 28]
|
|
feats = []
|
|
for h, w in zip(H, W):
|
|
feats.append(torch.rand((batch_size, num_channels, h, w), device=device))
|
|
return feats
|
|
|
|
def test_vert_align_with_meshes(self):
|
|
"""
|
|
Test vert align vs naive implementation with meshes.
|
|
"""
|
|
meshes = TestVertAlign.init_meshes(10, 1000, 3000)
|
|
feats = TestVertAlign.init_feats(10, 256)
|
|
|
|
# feats in list
|
|
out = vert_align(feats, meshes, return_packed=True)
|
|
naive_out = TestVertAlign.vert_align_naive(feats, meshes, return_packed=True)
|
|
self.assertClose(out, naive_out)
|
|
|
|
# feats as tensor
|
|
out = vert_align(feats[0], meshes, return_packed=True)
|
|
naive_out = TestVertAlign.vert_align_naive(feats[0], meshes, return_packed=True)
|
|
self.assertClose(out, naive_out)
|
|
|
|
def test_vert_align_with_pointclouds(self):
|
|
"""
|
|
Test vert align vs naive implementation with meshes.
|
|
"""
|
|
pointclouds = TestVertAlign.init_pointclouds(10, 1000)
|
|
feats = TestVertAlign.init_feats(10, 256)
|
|
|
|
# feats in list
|
|
out = vert_align(feats, pointclouds, return_packed=True)
|
|
naive_out = TestVertAlign.vert_align_naive(
|
|
feats, pointclouds, return_packed=True
|
|
)
|
|
self.assertClose(out, naive_out)
|
|
|
|
# feats as tensor
|
|
out = vert_align(feats[0], pointclouds, return_packed=True)
|
|
naive_out = TestVertAlign.vert_align_naive(
|
|
feats[0], pointclouds, return_packed=True
|
|
)
|
|
self.assertClose(out, naive_out)
|
|
|
|
def test_vert_align_with_verts(self):
|
|
"""
|
|
Test vert align vs naive implementation with verts as tensor.
|
|
"""
|
|
feats = TestVertAlign.init_feats(10, 256)
|
|
verts = (
|
|
torch.rand((10, 100, 3), dtype=torch.float32, device=feats[0].device) * 2.0
|
|
- 1.0
|
|
)
|
|
|
|
# feats in list
|
|
out = vert_align(feats, verts, return_packed=True)
|
|
naive_out = TestVertAlign.vert_align_naive(feats, verts, return_packed=True)
|
|
self.assertClose(out, naive_out)
|
|
|
|
# feats as tensor
|
|
out = vert_align(feats[0], verts, return_packed=True)
|
|
naive_out = TestVertAlign.vert_align_naive(feats[0], verts, return_packed=True)
|
|
self.assertClose(out, naive_out)
|
|
|
|
out2 = vert_align(feats[0], verts, return_packed=True, align_corners=False)
|
|
naive_out2 = TestVertAlign.vert_align_naive(
|
|
feats[0], verts, return_packed=True, align_corners=False
|
|
)
|
|
self.assertFalse(torch.allclose(out, out2))
|
|
self.assertTrue(torch.allclose(out2, naive_out2))
|
|
|
|
@staticmethod
|
|
def vert_align_with_init(
|
|
num_meshes: int, num_verts: int, num_faces: int, device: str = "cpu"
|
|
):
|
|
device = torch.device(device)
|
|
verts_list = []
|
|
faces_list = []
|
|
for _ in range(num_meshes):
|
|
verts = torch.rand((num_verts, 3), dtype=torch.float32, device=device)
|
|
faces = torch.randint(
|
|
num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
|
|
)
|
|
verts_list.append(verts)
|
|
faces_list.append(faces)
|
|
meshes = Meshes(verts_list, faces_list)
|
|
feats = TestVertAlign.init_feats(num_meshes, device=device)
|
|
torch.cuda.synchronize()
|
|
|
|
def sample_features():
|
|
vert_align(feats, meshes, return_packed=True)
|
|
torch.cuda.synchronize()
|
|
|
|
return sample_features
|