mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-07-31 10:52:50 +08:00
Summary: Replace implementations of `so3_exp_map` and `so3_log_map` in so3.py with existing more-stable implementations. Reviewed By: bottler Differential Revision: D52513319 fbshipit-source-id: fbfc039643fef284d8baa11bab61651964077afe
284 lines
11 KiB
Python
284 lines
11 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
|
|
import math
|
|
import unittest
|
|
from distutils.version import LooseVersion
|
|
|
|
import numpy as np
|
|
import torch
|
|
from pytorch3d.transforms.so3 import (
|
|
hat,
|
|
so3_exp_map,
|
|
so3_log_map,
|
|
so3_relative_angle,
|
|
so3_rotation_angle,
|
|
)
|
|
|
|
from .common_testing import TestCaseMixin
|
|
|
|
|
|
class TestSO3(TestCaseMixin, unittest.TestCase):
|
|
def setUp(self) -> None:
|
|
super().setUp()
|
|
torch.manual_seed(42)
|
|
np.random.seed(42)
|
|
|
|
@staticmethod
|
|
def init_log_rot(batch_size: int = 10):
|
|
"""
|
|
Initialize a list of `batch_size` 3-dimensional vectors representing
|
|
randomly generated logarithms of rotation matrices.
|
|
"""
|
|
device = torch.device("cuda:0")
|
|
log_rot = torch.randn((batch_size, 3), dtype=torch.float32, device=device)
|
|
return log_rot
|
|
|
|
@staticmethod
|
|
def init_rot(batch_size: int = 10):
|
|
"""
|
|
Randomly generate a batch of `batch_size` 3x3 rotation matrices.
|
|
"""
|
|
device = torch.device("cuda:0")
|
|
|
|
# TODO(dnovotny): replace with random_rotation from random_rotation.py
|
|
rot = []
|
|
for _ in range(batch_size):
|
|
r = torch.linalg.qr(torch.randn((3, 3), device=device))[0]
|
|
f = torch.randint(2, (3,), device=device, dtype=torch.float32)
|
|
if f.sum() % 2 == 0:
|
|
f = 1 - f
|
|
rot.append(r * (2 * f - 1).float())
|
|
rot = torch.stack(rot)
|
|
|
|
return rot
|
|
|
|
def test_determinant(self):
|
|
"""
|
|
Tests whether the determinants of 3x3 rotation matrices produced
|
|
by `so3_exp_map` are (almost) equal to 1.
|
|
"""
|
|
log_rot = TestSO3.init_log_rot(batch_size=30)
|
|
Rs = so3_exp_map(log_rot)
|
|
dets = torch.det(Rs)
|
|
self.assertClose(dets, torch.ones_like(dets), atol=1e-4)
|
|
|
|
def test_cross(self):
|
|
"""
|
|
For a pair of randomly generated 3-dimensional vectors `a` and `b`,
|
|
tests whether a matrix product of `hat(a)` and `b` equals the result
|
|
of a cross product between `a` and `b`.
|
|
"""
|
|
device = torch.device("cuda:0")
|
|
a, b = torch.randn((2, 100, 3), dtype=torch.float32, device=device)
|
|
hat_a = hat(a)
|
|
cross = torch.bmm(hat_a, b[:, :, None])[:, :, 0]
|
|
torch_cross = torch.cross(a, b, dim=1)
|
|
self.assertClose(torch_cross, cross, atol=1e-4)
|
|
|
|
def test_bad_so3_input_value_err(self):
|
|
"""
|
|
Tests whether `so3_exp_map` and `so3_log_map` correctly return
|
|
a ValueError if called with an argument of incorrect shape or, in case
|
|
of `so3_exp_map`, unexpected trace.
|
|
"""
|
|
device = torch.device("cuda:0")
|
|
log_rot = torch.randn(size=[5, 4], device=device)
|
|
with self.assertRaises(ValueError) as err:
|
|
so3_exp_map(log_rot)
|
|
self.assertTrue("Input tensor shape has to be Nx3." in str(err.exception))
|
|
|
|
rot = torch.randn(size=[5, 3, 5], device=device)
|
|
with self.assertRaises(ValueError) as err:
|
|
so3_log_map(rot)
|
|
self.assertTrue("Input has to be a batch of 3x3 Tensors." in str(err.exception))
|
|
|
|
def test_so3_exp_singularity(self, batch_size: int = 100):
|
|
"""
|
|
Tests whether the `so3_exp_map` is robust to the input vectors
|
|
the norms of which are close to the numerically unstable region
|
|
(vectors with low l2-norms).
|
|
"""
|
|
# generate random log-rotations with a tiny angle
|
|
log_rot = TestSO3.init_log_rot(batch_size=batch_size)
|
|
log_rot_small = log_rot * 1e-6
|
|
log_rot_small.requires_grad = True
|
|
R = so3_exp_map(log_rot_small)
|
|
# tests whether all outputs are finite
|
|
self.assertTrue(torch.isfinite(R).all())
|
|
# tests whether the gradient is not None and all finite
|
|
loss = R.sum()
|
|
loss.backward()
|
|
self.assertIsNotNone(log_rot_small.grad)
|
|
self.assertTrue(torch.isfinite(log_rot_small.grad).all())
|
|
|
|
def test_so3_log_singularity(self, batch_size: int = 100):
|
|
"""
|
|
Tests whether the `so3_log_map` is robust to the input matrices
|
|
who's rotation angles are close to the numerically unstable region
|
|
(i.e. matrices with low rotation angles).
|
|
"""
|
|
# generate random rotations with a tiny angle
|
|
device = torch.device("cuda:0")
|
|
identity = torch.eye(3, device=device)
|
|
rot180 = identity * torch.tensor([[1.0, -1.0, -1.0]], device=device)
|
|
r = [identity, rot180]
|
|
# add random rotations and random almost orthonormal matrices
|
|
r.extend(
|
|
[
|
|
torch.linalg.qr(identity + torch.randn_like(identity) * 1e-4)[0]
|
|
+ float(i > batch_size // 2) * (0.5 - torch.rand_like(identity)) * 1e-3
|
|
# this adds random noise to the second half
|
|
# of the random orthogonal matrices to generate
|
|
# near-orthogonal matrices
|
|
for i in range(batch_size - 2)
|
|
]
|
|
)
|
|
r = torch.stack(r)
|
|
r.requires_grad = True
|
|
# the log of the rotation matrix r
|
|
r_log = so3_log_map(r, cos_bound=1e-4, eps=1e-2)
|
|
# tests whether all outputs are finite
|
|
self.assertTrue(torch.isfinite(r_log).all())
|
|
# tests whether the gradient is not None and all finite
|
|
loss = r.sum()
|
|
loss.backward()
|
|
self.assertIsNotNone(r.grad)
|
|
self.assertTrue(torch.isfinite(r.grad).all())
|
|
|
|
def test_so3_log_to_exp_to_log_to_exp(self, batch_size: int = 100):
|
|
"""
|
|
Check that
|
|
`so3_exp_map(so3_log_map(so3_exp_map(log_rot)))
|
|
== so3_exp_map(log_rot)`
|
|
for a randomly generated batch of rotation matrix logarithms `log_rot`.
|
|
Unlike `test_so3_log_to_exp_to_log`, this test checks the
|
|
correctness of converting a `log_rot` which contains values > math.pi.
|
|
"""
|
|
log_rot = 2.0 * TestSO3.init_log_rot(batch_size=batch_size)
|
|
# check also the singular cases where rot. angle = {0, 2pi}
|
|
log_rot[:2] = 0
|
|
log_rot[1, 0] = 2.0 * math.pi - 1e-6
|
|
rot = so3_exp_map(log_rot, eps=1e-4)
|
|
rot_ = so3_exp_map(so3_log_map(rot, eps=1e-4, cos_bound=1e-6), eps=1e-6)
|
|
self.assertClose(rot, rot_, atol=0.01)
|
|
angles = so3_relative_angle(rot, rot_, cos_bound=1e-6)
|
|
self.assertClose(angles, torch.zeros_like(angles), atol=0.01)
|
|
|
|
def test_so3_log_to_exp_to_log(self, batch_size: int = 100):
|
|
"""
|
|
Check that `so3_log_map(so3_exp_map(log_rot))==log_rot` for
|
|
a randomly generated batch of rotation matrix logarithms `log_rot`.
|
|
"""
|
|
log_rot = TestSO3.init_log_rot(batch_size=batch_size)
|
|
# check also the singular cases where rot. angle = 0
|
|
log_rot[:1] = 0
|
|
log_rot_ = so3_log_map(so3_exp_map(log_rot))
|
|
self.assertClose(log_rot, log_rot_, atol=1e-4)
|
|
|
|
def test_so3_exp_to_log_to_exp(self, batch_size: int = 100):
|
|
"""
|
|
Check that `so3_exp_map(so3_log_map(R))==R` for
|
|
a batch of randomly generated rotation matrices `R`.
|
|
"""
|
|
rot = TestSO3.init_rot(batch_size=batch_size)
|
|
non_singular = (so3_rotation_angle(rot) - math.pi).abs() > 1e-2
|
|
rot = rot[non_singular]
|
|
rot_ = so3_exp_map(so3_log_map(rot, eps=1e-8, cos_bound=1e-8), eps=1e-8)
|
|
self.assertClose(rot_, rot, atol=0.1)
|
|
angles = so3_relative_angle(rot, rot_, cos_bound=1e-4)
|
|
self.assertClose(angles, torch.zeros_like(angles), atol=0.1)
|
|
|
|
def test_so3_cos_relative_angle(self, batch_size: int = 100):
|
|
"""
|
|
Check that `so3_relative_angle(R1, R2, cos_angle=False).cos()`
|
|
is the same as `so3_relative_angle(R1, R2, cos_angle=True)` for
|
|
batches of randomly generated rotation matrices `R1` and `R2`.
|
|
"""
|
|
rot1 = TestSO3.init_rot(batch_size=batch_size)
|
|
rot2 = TestSO3.init_rot(batch_size=batch_size)
|
|
angles = so3_relative_angle(rot1, rot2, cos_angle=False).cos()
|
|
angles_ = so3_relative_angle(rot1, rot2, cos_angle=True)
|
|
self.assertClose(angles, angles_, atol=1e-4)
|
|
|
|
def test_so3_cos_angle(self, batch_size: int = 100):
|
|
"""
|
|
Check that `so3_rotation_angle(R, cos_angle=False).cos()`
|
|
is the same as `so3_rotation_angle(R, cos_angle=True)` for
|
|
a batch of randomly generated rotation matrices `R`.
|
|
"""
|
|
rot = TestSO3.init_rot(batch_size=batch_size)
|
|
angles = so3_rotation_angle(rot, cos_angle=False).cos()
|
|
angles_ = so3_rotation_angle(rot, cos_angle=True)
|
|
self.assertClose(angles, angles_, atol=1e-4)
|
|
|
|
def test_so3_cos_bound(self, batch_size: int = 100):
|
|
"""
|
|
Checks that for an identity rotation `R=I`, the so3_rotation_angle returns
|
|
non-finite gradients when `cos_bound=None` and finite gradients
|
|
for `cos_bound > 0.0`.
|
|
"""
|
|
# generate random rotations with a tiny angle to generate cases
|
|
# with the gradient singularity
|
|
device = torch.device("cuda:0")
|
|
identity = torch.eye(3, device=device)
|
|
rot180 = identity * torch.tensor([[1.0, -1.0, -1.0]], device=device)
|
|
r = [identity, rot180]
|
|
r.extend(
|
|
[
|
|
torch.linalg.qr(identity + torch.randn_like(identity) * 1e-4)[0]
|
|
for _ in range(batch_size - 2)
|
|
]
|
|
)
|
|
r = torch.stack(r)
|
|
r.requires_grad = True
|
|
for is_grad_finite in (True, False):
|
|
# clear the gradients and decide the cos_bound:
|
|
# for is_grad_finite we run so3_rotation_angle with cos_bound
|
|
# set to a small float, otherwise we set to 0.0
|
|
r.grad = None
|
|
cos_bound = 1e-4 if is_grad_finite else 0.0
|
|
# compute the angles of r
|
|
angles = so3_rotation_angle(r, cos_bound=cos_bound)
|
|
# tests whether all outputs are finite in both cases
|
|
self.assertTrue(torch.isfinite(angles).all())
|
|
# compute the gradients
|
|
loss = angles.sum()
|
|
loss.backward()
|
|
# tests whether the gradient is not None for both cases
|
|
self.assertIsNotNone(r.grad)
|
|
if is_grad_finite:
|
|
# all grad values have to be finite
|
|
self.assertTrue(torch.isfinite(r.grad).all())
|
|
|
|
@unittest.skipIf(LooseVersion(torch.__version__) < "1.9", "recent torchscript only")
|
|
def test_scriptable(self):
|
|
torch.jit.script(so3_exp_map)
|
|
torch.jit.script(so3_log_map)
|
|
|
|
@staticmethod
|
|
def so3_expmap(batch_size: int = 10):
|
|
log_rot = TestSO3.init_log_rot(batch_size=batch_size)
|
|
torch.cuda.synchronize()
|
|
|
|
def compute_rots():
|
|
so3_exp_map(log_rot)
|
|
torch.cuda.synchronize()
|
|
|
|
return compute_rots
|
|
|
|
@staticmethod
|
|
def so3_logmap(batch_size: int = 10):
|
|
log_rot = TestSO3.init_rot(batch_size=batch_size)
|
|
torch.cuda.synchronize()
|
|
|
|
def compute_logs():
|
|
so3_log_map(log_rot)
|
|
torch.cuda.synchronize()
|
|
|
|
return compute_logs
|