pytorch3d/tests/test_so3.py
Abdelrahman Selim 292acc71a3 Update so3 operations for numerical stability
Summary: Replace implementations of `so3_exp_map` and `so3_log_map` in so3.py with existing more-stable implementations.

Reviewed By: bottler

Differential Revision: D52513319

fbshipit-source-id: fbfc039643fef284d8baa11bab61651964077afe
2024-01-04 02:26:56 -08:00

284 lines
11 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import math
import unittest
from distutils.version import LooseVersion
import numpy as np
import torch
from pytorch3d.transforms.so3 import (
hat,
so3_exp_map,
so3_log_map,
so3_relative_angle,
so3_rotation_angle,
)
from .common_testing import TestCaseMixin
class TestSO3(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
super().setUp()
torch.manual_seed(42)
np.random.seed(42)
@staticmethod
def init_log_rot(batch_size: int = 10):
"""
Initialize a list of `batch_size` 3-dimensional vectors representing
randomly generated logarithms of rotation matrices.
"""
device = torch.device("cuda:0")
log_rot = torch.randn((batch_size, 3), dtype=torch.float32, device=device)
return log_rot
@staticmethod
def init_rot(batch_size: int = 10):
"""
Randomly generate a batch of `batch_size` 3x3 rotation matrices.
"""
device = torch.device("cuda:0")
# TODO(dnovotny): replace with random_rotation from random_rotation.py
rot = []
for _ in range(batch_size):
r = torch.linalg.qr(torch.randn((3, 3), device=device))[0]
f = torch.randint(2, (3,), device=device, dtype=torch.float32)
if f.sum() % 2 == 0:
f = 1 - f
rot.append(r * (2 * f - 1).float())
rot = torch.stack(rot)
return rot
def test_determinant(self):
"""
Tests whether the determinants of 3x3 rotation matrices produced
by `so3_exp_map` are (almost) equal to 1.
"""
log_rot = TestSO3.init_log_rot(batch_size=30)
Rs = so3_exp_map(log_rot)
dets = torch.det(Rs)
self.assertClose(dets, torch.ones_like(dets), atol=1e-4)
def test_cross(self):
"""
For a pair of randomly generated 3-dimensional vectors `a` and `b`,
tests whether a matrix product of `hat(a)` and `b` equals the result
of a cross product between `a` and `b`.
"""
device = torch.device("cuda:0")
a, b = torch.randn((2, 100, 3), dtype=torch.float32, device=device)
hat_a = hat(a)
cross = torch.bmm(hat_a, b[:, :, None])[:, :, 0]
torch_cross = torch.cross(a, b, dim=1)
self.assertClose(torch_cross, cross, atol=1e-4)
def test_bad_so3_input_value_err(self):
"""
Tests whether `so3_exp_map` and `so3_log_map` correctly return
a ValueError if called with an argument of incorrect shape or, in case
of `so3_exp_map`, unexpected trace.
"""
device = torch.device("cuda:0")
log_rot = torch.randn(size=[5, 4], device=device)
with self.assertRaises(ValueError) as err:
so3_exp_map(log_rot)
self.assertTrue("Input tensor shape has to be Nx3." in str(err.exception))
rot = torch.randn(size=[5, 3, 5], device=device)
with self.assertRaises(ValueError) as err:
so3_log_map(rot)
self.assertTrue("Input has to be a batch of 3x3 Tensors." in str(err.exception))
def test_so3_exp_singularity(self, batch_size: int = 100):
"""
Tests whether the `so3_exp_map` is robust to the input vectors
the norms of which are close to the numerically unstable region
(vectors with low l2-norms).
"""
# generate random log-rotations with a tiny angle
log_rot = TestSO3.init_log_rot(batch_size=batch_size)
log_rot_small = log_rot * 1e-6
log_rot_small.requires_grad = True
R = so3_exp_map(log_rot_small)
# tests whether all outputs are finite
self.assertTrue(torch.isfinite(R).all())
# tests whether the gradient is not None and all finite
loss = R.sum()
loss.backward()
self.assertIsNotNone(log_rot_small.grad)
self.assertTrue(torch.isfinite(log_rot_small.grad).all())
def test_so3_log_singularity(self, batch_size: int = 100):
"""
Tests whether the `so3_log_map` is robust to the input matrices
who's rotation angles are close to the numerically unstable region
(i.e. matrices with low rotation angles).
"""
# generate random rotations with a tiny angle
device = torch.device("cuda:0")
identity = torch.eye(3, device=device)
rot180 = identity * torch.tensor([[1.0, -1.0, -1.0]], device=device)
r = [identity, rot180]
# add random rotations and random almost orthonormal matrices
r.extend(
[
torch.linalg.qr(identity + torch.randn_like(identity) * 1e-4)[0]
+ float(i > batch_size // 2) * (0.5 - torch.rand_like(identity)) * 1e-3
# this adds random noise to the second half
# of the random orthogonal matrices to generate
# near-orthogonal matrices
for i in range(batch_size - 2)
]
)
r = torch.stack(r)
r.requires_grad = True
# the log of the rotation matrix r
r_log = so3_log_map(r, cos_bound=1e-4, eps=1e-2)
# tests whether all outputs are finite
self.assertTrue(torch.isfinite(r_log).all())
# tests whether the gradient is not None and all finite
loss = r.sum()
loss.backward()
self.assertIsNotNone(r.grad)
self.assertTrue(torch.isfinite(r.grad).all())
def test_so3_log_to_exp_to_log_to_exp(self, batch_size: int = 100):
"""
Check that
`so3_exp_map(so3_log_map(so3_exp_map(log_rot)))
== so3_exp_map(log_rot)`
for a randomly generated batch of rotation matrix logarithms `log_rot`.
Unlike `test_so3_log_to_exp_to_log`, this test checks the
correctness of converting a `log_rot` which contains values > math.pi.
"""
log_rot = 2.0 * TestSO3.init_log_rot(batch_size=batch_size)
# check also the singular cases where rot. angle = {0, 2pi}
log_rot[:2] = 0
log_rot[1, 0] = 2.0 * math.pi - 1e-6
rot = so3_exp_map(log_rot, eps=1e-4)
rot_ = so3_exp_map(so3_log_map(rot, eps=1e-4, cos_bound=1e-6), eps=1e-6)
self.assertClose(rot, rot_, atol=0.01)
angles = so3_relative_angle(rot, rot_, cos_bound=1e-6)
self.assertClose(angles, torch.zeros_like(angles), atol=0.01)
def test_so3_log_to_exp_to_log(self, batch_size: int = 100):
"""
Check that `so3_log_map(so3_exp_map(log_rot))==log_rot` for
a randomly generated batch of rotation matrix logarithms `log_rot`.
"""
log_rot = TestSO3.init_log_rot(batch_size=batch_size)
# check also the singular cases where rot. angle = 0
log_rot[:1] = 0
log_rot_ = so3_log_map(so3_exp_map(log_rot))
self.assertClose(log_rot, log_rot_, atol=1e-4)
def test_so3_exp_to_log_to_exp(self, batch_size: int = 100):
"""
Check that `so3_exp_map(so3_log_map(R))==R` for
a batch of randomly generated rotation matrices `R`.
"""
rot = TestSO3.init_rot(batch_size=batch_size)
non_singular = (so3_rotation_angle(rot) - math.pi).abs() > 1e-2
rot = rot[non_singular]
rot_ = so3_exp_map(so3_log_map(rot, eps=1e-8, cos_bound=1e-8), eps=1e-8)
self.assertClose(rot_, rot, atol=0.1)
angles = so3_relative_angle(rot, rot_, cos_bound=1e-4)
self.assertClose(angles, torch.zeros_like(angles), atol=0.1)
def test_so3_cos_relative_angle(self, batch_size: int = 100):
"""
Check that `so3_relative_angle(R1, R2, cos_angle=False).cos()`
is the same as `so3_relative_angle(R1, R2, cos_angle=True)` for
batches of randomly generated rotation matrices `R1` and `R2`.
"""
rot1 = TestSO3.init_rot(batch_size=batch_size)
rot2 = TestSO3.init_rot(batch_size=batch_size)
angles = so3_relative_angle(rot1, rot2, cos_angle=False).cos()
angles_ = so3_relative_angle(rot1, rot2, cos_angle=True)
self.assertClose(angles, angles_, atol=1e-4)
def test_so3_cos_angle(self, batch_size: int = 100):
"""
Check that `so3_rotation_angle(R, cos_angle=False).cos()`
is the same as `so3_rotation_angle(R, cos_angle=True)` for
a batch of randomly generated rotation matrices `R`.
"""
rot = TestSO3.init_rot(batch_size=batch_size)
angles = so3_rotation_angle(rot, cos_angle=False).cos()
angles_ = so3_rotation_angle(rot, cos_angle=True)
self.assertClose(angles, angles_, atol=1e-4)
def test_so3_cos_bound(self, batch_size: int = 100):
"""
Checks that for an identity rotation `R=I`, the so3_rotation_angle returns
non-finite gradients when `cos_bound=None` and finite gradients
for `cos_bound > 0.0`.
"""
# generate random rotations with a tiny angle to generate cases
# with the gradient singularity
device = torch.device("cuda:0")
identity = torch.eye(3, device=device)
rot180 = identity * torch.tensor([[1.0, -1.0, -1.0]], device=device)
r = [identity, rot180]
r.extend(
[
torch.linalg.qr(identity + torch.randn_like(identity) * 1e-4)[0]
for _ in range(batch_size - 2)
]
)
r = torch.stack(r)
r.requires_grad = True
for is_grad_finite in (True, False):
# clear the gradients and decide the cos_bound:
# for is_grad_finite we run so3_rotation_angle with cos_bound
# set to a small float, otherwise we set to 0.0
r.grad = None
cos_bound = 1e-4 if is_grad_finite else 0.0
# compute the angles of r
angles = so3_rotation_angle(r, cos_bound=cos_bound)
# tests whether all outputs are finite in both cases
self.assertTrue(torch.isfinite(angles).all())
# compute the gradients
loss = angles.sum()
loss.backward()
# tests whether the gradient is not None for both cases
self.assertIsNotNone(r.grad)
if is_grad_finite:
# all grad values have to be finite
self.assertTrue(torch.isfinite(r.grad).all())
@unittest.skipIf(LooseVersion(torch.__version__) < "1.9", "recent torchscript only")
def test_scriptable(self):
torch.jit.script(so3_exp_map)
torch.jit.script(so3_log_map)
@staticmethod
def so3_expmap(batch_size: int = 10):
log_rot = TestSO3.init_log_rot(batch_size=batch_size)
torch.cuda.synchronize()
def compute_rots():
so3_exp_map(log_rot)
torch.cuda.synchronize()
return compute_rots
@staticmethod
def so3_logmap(batch_size: int = 10):
log_rot = TestSO3.init_rot(batch_size=batch_size)
torch.cuda.synchronize()
def compute_logs():
so3_log_map(log_rot)
torch.cuda.synchronize()
return compute_logs