mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-07-31 10:52:50 +08:00
Summary: Move testing targets from pytorch3d/tests/TARGETS to pytorch3d/TARGETS. Reviewed By: shapovalov Differential Revision: D36186940 fbshipit-source-id: a4c52c4d99351f885e2b0bf870532d530324039b
145 lines
5.1 KiB
Python
145 lines
5.1 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
from pytorch3d.ops import mesh_face_areas_normals
|
|
from pytorch3d.structures.meshes import Meshes
|
|
|
|
from .common_testing import get_random_cuda_device, TestCaseMixin
|
|
|
|
|
|
class TestFaceAreasNormals(TestCaseMixin, unittest.TestCase):
|
|
def setUp(self) -> None:
|
|
super().setUp()
|
|
torch.manual_seed(1)
|
|
|
|
@staticmethod
|
|
def init_meshes(
|
|
num_meshes: int = 10,
|
|
num_verts: int = 1000,
|
|
num_faces: int = 3000,
|
|
device: str = "cpu",
|
|
):
|
|
device = torch.device(device)
|
|
verts_list = []
|
|
faces_list = []
|
|
for _ in range(num_meshes):
|
|
verts = torch.rand(
|
|
(num_verts, 3), dtype=torch.float32, device=device, requires_grad=True
|
|
)
|
|
faces = torch.randint(
|
|
num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
|
|
)
|
|
verts_list.append(verts)
|
|
faces_list.append(faces)
|
|
meshes = Meshes(verts_list, faces_list)
|
|
|
|
return meshes
|
|
|
|
@staticmethod
|
|
def face_areas_normals_python(verts, faces):
|
|
"""
|
|
Pytorch implementation for face areas & normals.
|
|
"""
|
|
# TODO(gkioxari) Change cast to floats once we add support for doubles.
|
|
verts = verts.float()
|
|
vertices_faces = verts[faces] # (F, 3, 3)
|
|
# vector pointing from v0 to v1
|
|
v01 = vertices_faces[:, 1] - vertices_faces[:, 0]
|
|
# vector pointing from v0 to v2
|
|
v02 = vertices_faces[:, 2] - vertices_faces[:, 0]
|
|
normals = torch.cross(v01, v02, dim=1) # (F, 3)
|
|
face_areas = normals.norm(dim=-1) / 2
|
|
face_normals = torch.nn.functional.normalize(normals, p=2, dim=1, eps=1e-6)
|
|
return face_areas, face_normals
|
|
|
|
def _test_face_areas_normals_helper(self, device, dtype=torch.float32):
|
|
"""
|
|
Check the results from face_areas cuda/cpp and PyTorch implementation are
|
|
the same.
|
|
"""
|
|
meshes = self.init_meshes(10, 200, 400, device=device)
|
|
# make them leaf nodes
|
|
verts = meshes.verts_packed().detach().clone().to(dtype)
|
|
verts.requires_grad = True
|
|
faces = meshes.faces_packed().detach().clone()
|
|
|
|
# forward
|
|
areas, normals = mesh_face_areas_normals(verts, faces)
|
|
verts_torch = verts.detach().clone().to(dtype)
|
|
verts_torch.requires_grad = True
|
|
faces_torch = faces.detach().clone()
|
|
(areas_torch, normals_torch) = TestFaceAreasNormals.face_areas_normals_python(
|
|
verts_torch, faces_torch
|
|
)
|
|
self.assertClose(areas_torch, areas, atol=1e-7)
|
|
# normals get normalized by area thus sensitivity increases as areas
|
|
# in our tests can be arbitrarily small. Thus we compare normals after
|
|
# multiplying with areas
|
|
unnormals = normals * areas.view(-1, 1)
|
|
unnormals_torch = normals_torch * areas_torch.view(-1, 1)
|
|
self.assertClose(unnormals_torch, unnormals, atol=1e-6)
|
|
|
|
# backward
|
|
grad_areas = torch.rand(areas.shape, device=device, dtype=dtype)
|
|
grad_normals = torch.rand(normals.shape, device=device, dtype=dtype)
|
|
areas.backward((grad_areas, grad_normals))
|
|
grad_verts = verts.grad
|
|
areas_torch.backward((grad_areas, grad_normals))
|
|
grad_verts_torch = verts_torch.grad
|
|
self.assertClose(grad_verts_torch, grad_verts, atol=1e-6)
|
|
|
|
def test_face_areas_normals_cpu(self):
|
|
self._test_face_areas_normals_helper("cpu")
|
|
|
|
def test_face_areas_normals_cuda(self):
|
|
device = get_random_cuda_device()
|
|
self._test_face_areas_normals_helper(device)
|
|
|
|
def test_nonfloats_cpu(self):
|
|
self._test_face_areas_normals_helper("cpu", dtype=torch.double)
|
|
|
|
def test_nonfloats_cuda(self):
|
|
device = get_random_cuda_device()
|
|
self._test_face_areas_normals_helper(device, dtype=torch.double)
|
|
|
|
@staticmethod
|
|
def face_areas_normals_with_init(
|
|
num_meshes: int, num_verts: int, num_faces: int, device: str = "cpu"
|
|
):
|
|
meshes = TestFaceAreasNormals.init_meshes(
|
|
num_meshes, num_verts, num_faces, device
|
|
)
|
|
verts = meshes.verts_packed()
|
|
faces = meshes.faces_packed()
|
|
torch.cuda.synchronize()
|
|
|
|
def face_areas_normals():
|
|
mesh_face_areas_normals(verts, faces)
|
|
torch.cuda.synchronize()
|
|
|
|
return face_areas_normals
|
|
|
|
@staticmethod
|
|
def face_areas_normals_with_init_torch(
|
|
num_meshes: int, num_verts: int, num_faces: int, device: str = "cpu"
|
|
):
|
|
meshes = TestFaceAreasNormals.init_meshes(
|
|
num_meshes, num_verts, num_faces, device
|
|
)
|
|
verts = meshes.verts_packed()
|
|
faces = meshes.faces_packed()
|
|
torch.cuda.synchronize()
|
|
|
|
def face_areas_normals():
|
|
TestFaceAreasNormals.face_areas_normals_python(verts, faces)
|
|
torch.cuda.synchronize()
|
|
|
|
return face_areas_normals
|