mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-07-31 10:52:50 +08:00
Summary: * Adds a "max" option for the point_reduction input to the chamfer_distance function. * When combining the x and y directions, maxes the losses instead of summing them when point_reduction="max". * Moves batch reduction to happen after the directions are combined. * Adds test_chamfer_point_reduction_max and test_single_directional_chamfer_point_reduction_max tests. Fixes https://github.com/facebookresearch/pytorch3d/issues/1838 Reviewed By: bottler Differential Revision: D60614661 fbshipit-source-id: 7879816acfda03e945bada951b931d2c522756eb
1239 lines
45 KiB
Python
1239 lines
45 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import unittest
|
|
from collections import namedtuple
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from pytorch3d.loss import chamfer_distance
|
|
from pytorch3d.structures.pointclouds import Pointclouds
|
|
|
|
from .common_testing import get_random_cuda_device, TestCaseMixin
|
|
|
|
|
|
# Output of init_pointclouds
|
|
points_normals = namedtuple(
|
|
"points_normals", "p1_lengths p2_lengths cloud1 cloud2 p1 p2 n1 n2 weights"
|
|
)
|
|
|
|
|
|
class TestChamfer(TestCaseMixin, unittest.TestCase):
|
|
def setUp(self) -> None:
|
|
super().setUp()
|
|
torch.manual_seed(1)
|
|
|
|
@staticmethod
|
|
def init_pointclouds(
|
|
N, P1, P2, device, requires_grad: bool = True, allow_empty: bool = True
|
|
):
|
|
"""
|
|
Create 2 pointclouds object and associated padded points/normals tensors by
|
|
starting from lists. The clouds and tensors have the same data. The
|
|
leaf nodes for the clouds are a list of tensors. The padded tensor can be
|
|
used directly as a leaf node.
|
|
"""
|
|
low = 0 if allow_empty else 1
|
|
p1_lengths = torch.randint(low, P1, size=(N,), dtype=torch.int64, device=device)
|
|
p2_lengths = torch.randint(low, P2, size=(N,), dtype=torch.int64, device=device)
|
|
P1 = p1_lengths.max().item()
|
|
P2 = p2_lengths.max().item()
|
|
weights = torch.rand((N,), dtype=torch.float32, device=device)
|
|
|
|
# list of points and normals tensors
|
|
p1 = torch.rand((N, P1, 3), dtype=torch.float32, device=device)
|
|
p2 = torch.rand((N, P2, 3), dtype=torch.float32, device=device)
|
|
n1 = torch.rand((N, P1, 3), dtype=torch.float32, device=device)
|
|
n2 = torch.rand((N, P2, 3), dtype=torch.float32, device=device)
|
|
n1 /= n1.norm(dim=-1, p=2, keepdim=True)
|
|
n2 /= n2.norm(dim=-1, p=2, keepdim=True)
|
|
|
|
p1_list = []
|
|
p2_list = []
|
|
n1_list = []
|
|
n2_list = []
|
|
for i in range(N):
|
|
l1 = p1_lengths[i]
|
|
l2 = p2_lengths[i]
|
|
p1_list.append(p1[i, :l1].clone())
|
|
p2_list.append(p2[i, :l2].clone())
|
|
n1_list.append(n1[i, :l1].clone())
|
|
n2_list.append(n2[i, :l2].clone())
|
|
|
|
# Set requires_grad for all tensors in the lists and
|
|
# padded tensors.
|
|
if requires_grad:
|
|
for p in p2_list + p1_list + n1_list + n2_list + [p1, p2, n1, n2]:
|
|
p.requires_grad = True
|
|
|
|
# Create pointclouds objects
|
|
cloud1 = Pointclouds(points=p1_list, normals=n1_list)
|
|
cloud2 = Pointclouds(points=p2_list, normals=n2_list)
|
|
|
|
# Return pointclouds objects and padded tensors
|
|
return points_normals(
|
|
p1_lengths=p1_lengths,
|
|
p2_lengths=p2_lengths,
|
|
cloud1=cloud1,
|
|
cloud2=cloud2,
|
|
p1=p1,
|
|
p2=p2,
|
|
n1=n1,
|
|
n2=n2,
|
|
weights=weights,
|
|
)
|
|
|
|
@staticmethod
|
|
def chamfer_distance_naive_pointclouds(
|
|
p1, p2, norm: int = 2, device="cpu", abs_cosine=True
|
|
):
|
|
"""
|
|
Naive iterative implementation of nearest neighbor and chamfer distance.
|
|
x and y are assumed to be pointclouds objects with points and optionally normals.
|
|
This functions supports heterogeneous pointclouds in a batch.
|
|
Returns lists of the unreduced loss and loss_normals.
|
|
"""
|
|
x = p1.points_padded()
|
|
y = p2.points_padded()
|
|
N, P1, D = x.shape
|
|
P2 = y.size(1)
|
|
x_lengths = p1.num_points_per_cloud()
|
|
y_lengths = p2.num_points_per_cloud()
|
|
x_normals = p1.normals_padded()
|
|
y_normals = p2.normals_padded()
|
|
|
|
return_normals = x_normals is not None and y_normals is not None
|
|
|
|
# Initialize all distances to + inf
|
|
dist = torch.ones((N, P1, P2), dtype=torch.float32, device=device) * np.inf
|
|
|
|
x_mask = (
|
|
torch.arange(P1, device=x.device)[None] >= x_lengths[:, None]
|
|
) # shape [N, P1]
|
|
y_mask = (
|
|
torch.arange(P2, device=y.device)[None] >= y_lengths[:, None]
|
|
) # shape [N, P2]
|
|
|
|
is_x_heterogeneous = (x_lengths != P1).any()
|
|
is_y_heterogeneous = (y_lengths != P2).any()
|
|
# Only calculate the distances for the points which are not masked
|
|
for n in range(N):
|
|
for i1 in range(x_lengths[n]):
|
|
for i2 in range(y_lengths[n]):
|
|
if norm == 2:
|
|
dist[n, i1, i2] = torch.sum((x[n, i1, :] - y[n, i2, :]) ** 2)
|
|
elif norm == 1:
|
|
dist[n, i1, i2] = torch.sum(
|
|
torch.abs(x[n, i1, :] - y[n, i2, :])
|
|
)
|
|
else:
|
|
raise ValueError("No support for norm %d" % (norm))
|
|
|
|
x_dist = torch.min(dist, dim=2)[0] # (N, P1)
|
|
y_dist = torch.min(dist, dim=1)[0] # (N, P2)
|
|
|
|
if is_x_heterogeneous:
|
|
x_dist[x_mask] = 0.0
|
|
if is_y_heterogeneous:
|
|
y_dist[y_mask] = 0.0
|
|
|
|
loss = [x_dist, y_dist]
|
|
|
|
lnorm = [x.new_zeros(()), x.new_zeros(())]
|
|
|
|
if return_normals:
|
|
x_index = dist.argmin(2).view(N, P1, 1).expand(N, P1, 3)
|
|
y_index = dist.argmin(1).view(N, P2, 1).expand(N, P2, 3)
|
|
cosine_sim1 = F.cosine_similarity(
|
|
x_normals, y_normals.gather(1, x_index), dim=2, eps=1e-6
|
|
)
|
|
cosine_sim2 = F.cosine_similarity(
|
|
y_normals, x_normals.gather(1, y_index), dim=2, eps=1e-6
|
|
)
|
|
|
|
if abs_cosine:
|
|
lnorm1 = 1 - torch.abs(cosine_sim1)
|
|
lnorm2 = 1 - torch.abs(cosine_sim2)
|
|
else:
|
|
lnorm1 = 1 - cosine_sim1
|
|
lnorm2 = 1 - cosine_sim2
|
|
|
|
if is_x_heterogeneous:
|
|
lnorm1[x_mask] = 0.0
|
|
if is_y_heterogeneous:
|
|
lnorm2[y_mask] = 0.0
|
|
|
|
lnorm = [lnorm1, lnorm2] # [(N, P1), (N, P2)]
|
|
|
|
return loss, lnorm
|
|
|
|
@staticmethod
|
|
def chamfer_distance_naive(
|
|
x, y, x_normals=None, y_normals=None, norm: int = 2, abs_cosine=True
|
|
):
|
|
"""
|
|
Naive iterative implementation of nearest neighbor and chamfer distance.
|
|
Returns lists of the unreduced loss and loss_normals. This naive
|
|
version only supports homogeneous pointcouds in a batch.
|
|
"""
|
|
N, P1, D = x.shape
|
|
P2 = y.size(1)
|
|
device = x.device
|
|
return_normals = x_normals is not None and y_normals is not None
|
|
dist = torch.zeros((N, P1, P2), dtype=torch.float32, device=device)
|
|
|
|
for n in range(N):
|
|
for i1 in range(P1):
|
|
for i2 in range(P2):
|
|
if norm == 2:
|
|
dist[n, i1, i2] = torch.sum((x[n, i1, :] - y[n, i2, :]) ** 2)
|
|
elif norm == 1:
|
|
dist[n, i1, i2] = torch.sum(
|
|
torch.abs(x[n, i1, :] - y[n, i2, :])
|
|
)
|
|
else:
|
|
raise ValueError("No support for norm %d" % (norm))
|
|
|
|
loss = [
|
|
torch.min(dist, dim=2)[0], # (N, P1)
|
|
torch.min(dist, dim=1)[0], # (N, P2)
|
|
]
|
|
lnorm = [x.new_zeros(()), x.new_zeros(())]
|
|
|
|
if return_normals:
|
|
x_index = dist.argmin(2).view(N, P1, 1).expand(N, P1, 3)
|
|
y_index = dist.argmin(1).view(N, P2, 1).expand(N, P2, 3)
|
|
|
|
cosine_sim1 = F.cosine_similarity(
|
|
x_normals, y_normals.gather(1, x_index), dim=2, eps=1e-6
|
|
)
|
|
cosine_sim2 = F.cosine_similarity(
|
|
y_normals, x_normals.gather(1, y_index), dim=2, eps=1e-6
|
|
)
|
|
|
|
if abs_cosine:
|
|
lnorm1 = 1 - torch.abs(cosine_sim1)
|
|
lnorm2 = 1 - torch.abs(cosine_sim2)
|
|
else:
|
|
lnorm1 = 1 - cosine_sim1
|
|
lnorm2 = 1 - cosine_sim2
|
|
|
|
lnorm = [lnorm1, lnorm2] # [(N, P1), (N, P2)]
|
|
|
|
return loss, lnorm
|
|
|
|
def test_chamfer_point_batch_reduction_mean(self):
|
|
"""
|
|
Compare output of vectorized chamfer loss with naive implementation
|
|
for the default settings (point_reduction = "mean" and batch_reduction = "mean")
|
|
and no normals.
|
|
This tests only uses homogeneous pointclouds.
|
|
"""
|
|
N, max_P1, max_P2 = 7, 10, 18
|
|
device = get_random_cuda_device()
|
|
|
|
for norm in [1, 2]:
|
|
points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
|
|
p1 = points_normals.p1
|
|
p2 = points_normals.p2
|
|
weights = points_normals.weights
|
|
p11 = p1.detach().clone()
|
|
p22 = p2.detach().clone()
|
|
p11.requires_grad = True
|
|
p22.requires_grad = True
|
|
P1 = p1.shape[1]
|
|
P2 = p2.shape[1]
|
|
|
|
pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
|
|
p1, p2, norm=norm
|
|
)
|
|
|
|
# point_reduction = "mean".
|
|
loss, loss_norm = chamfer_distance(p11, p22, weights=weights, norm=norm)
|
|
pred_loss = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2
|
|
pred_loss *= weights
|
|
pred_loss = pred_loss.sum() / weights.sum()
|
|
|
|
self.assertClose(loss, pred_loss)
|
|
self.assertTrue(loss_norm is None)
|
|
|
|
# Check gradients
|
|
self._check_gradients(loss, None, pred_loss, None, p1, p11, p2, p22)
|
|
|
|
def test_chamfer_vs_naive_pointcloud(self):
|
|
"""
|
|
Test the default settings for chamfer_distance
|
|
(point reduction = "mean" and batch_reduction="mean") but with heterogeneous
|
|
pointclouds as input. Compare with the naive implementation of chamfer
|
|
which supports heterogeneous pointcloud objects.
|
|
"""
|
|
N, max_P1, max_P2 = 3, 70, 70
|
|
device = get_random_cuda_device()
|
|
|
|
for norm in [1, 2]:
|
|
points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
|
|
weights = points_normals.weights
|
|
x_lengths = points_normals.p1_lengths
|
|
y_lengths = points_normals.p2_lengths
|
|
|
|
# Chamfer with tensors as input for heterogeneous pointclouds.
|
|
cham_tensor, norm_tensor = chamfer_distance(
|
|
points_normals.p1,
|
|
points_normals.p2,
|
|
x_normals=points_normals.n1,
|
|
y_normals=points_normals.n2,
|
|
x_lengths=points_normals.p1_lengths,
|
|
y_lengths=points_normals.p2_lengths,
|
|
weights=weights,
|
|
norm=norm,
|
|
)
|
|
|
|
# Chamfer with pointclouds as input.
|
|
pred_loss, pred_norm_loss = TestChamfer.chamfer_distance_naive_pointclouds(
|
|
points_normals.cloud1, points_normals.cloud2, norm=norm, device=device
|
|
)
|
|
|
|
# Mean reduction point loss.
|
|
pred_loss[0] *= weights.view(N, 1)
|
|
pred_loss[1] *= weights.view(N, 1)
|
|
pred_loss_mean = (
|
|
pred_loss[0].sum(1) / x_lengths + pred_loss[1].sum(1) / y_lengths
|
|
)
|
|
pred_loss_mean = pred_loss_mean.sum()
|
|
pred_loss_mean /= weights.sum()
|
|
|
|
# Mean reduction norm loss.
|
|
pred_norm_loss[0] *= weights.view(N, 1)
|
|
pred_norm_loss[1] *= weights.view(N, 1)
|
|
pred_norm_loss_mean = (
|
|
pred_norm_loss[0].sum(1) / x_lengths
|
|
+ pred_norm_loss[1].sum(1) / y_lengths
|
|
)
|
|
pred_norm_loss_mean = pred_norm_loss_mean.sum() / weights.sum()
|
|
|
|
self.assertClose(pred_loss_mean, cham_tensor)
|
|
self.assertClose(pred_norm_loss_mean, norm_tensor)
|
|
|
|
self._check_gradients(
|
|
cham_tensor,
|
|
norm_tensor,
|
|
pred_loss_mean,
|
|
pred_norm_loss_mean,
|
|
points_normals.cloud1.points_list(),
|
|
points_normals.p1,
|
|
points_normals.cloud2.points_list(),
|
|
points_normals.p2,
|
|
points_normals.cloud1.normals_list(),
|
|
points_normals.n1,
|
|
points_normals.cloud2.normals_list(),
|
|
points_normals.n2,
|
|
x_lengths,
|
|
y_lengths,
|
|
)
|
|
|
|
def test_single_directional_chamfer_vs_naive_pointcloud(self):
|
|
"""
|
|
Test the single directional settings for chamfer_distance
|
|
(point reduction = "mean" and batch_reduction="mean") but with heterogeneous
|
|
pointclouds as input. Compare with the naive implementation of chamfer
|
|
which supports heterogeneous pointcloud objects.
|
|
"""
|
|
N, max_P1, max_P2 = 3, 70, 70
|
|
device = get_random_cuda_device()
|
|
|
|
for norm in [1, 2]:
|
|
for abs_cosine in [True, False]:
|
|
points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
|
|
weights = points_normals.weights
|
|
x_lengths = points_normals.p1_lengths
|
|
y_lengths = points_normals.p2_lengths
|
|
|
|
# Chamfer with tensors as input for heterogeneous pointclouds.
|
|
cham_tensor, norm_tensor = chamfer_distance(
|
|
points_normals.p1,
|
|
points_normals.p2,
|
|
x_normals=points_normals.n1,
|
|
y_normals=points_normals.n2,
|
|
x_lengths=points_normals.p1_lengths,
|
|
y_lengths=points_normals.p2_lengths,
|
|
weights=weights,
|
|
norm=norm,
|
|
single_directional=True,
|
|
abs_cosine=abs_cosine,
|
|
)
|
|
|
|
# Chamfer with pointclouds as input.
|
|
(
|
|
pred_loss,
|
|
pred_norm_loss,
|
|
) = TestChamfer.chamfer_distance_naive_pointclouds(
|
|
points_normals.cloud1,
|
|
points_normals.cloud2,
|
|
norm=norm,
|
|
device=device,
|
|
abs_cosine=abs_cosine,
|
|
)
|
|
|
|
# Mean reduction point loss.
|
|
pred_loss[0] *= weights.view(N, 1)
|
|
pred_loss_mean = pred_loss[0].sum(1) / x_lengths
|
|
pred_loss_mean = pred_loss_mean.sum()
|
|
pred_loss_mean /= weights.sum()
|
|
|
|
# Mean reduction norm loss.
|
|
pred_norm_loss[0] *= weights.view(N, 1)
|
|
pred_norm_loss_mean = pred_norm_loss[0].sum(1) / x_lengths
|
|
pred_norm_loss_mean = pred_norm_loss_mean.sum() / weights.sum()
|
|
|
|
self.assertClose(pred_loss_mean, cham_tensor)
|
|
self.assertClose(pred_norm_loss_mean, norm_tensor)
|
|
|
|
self._check_gradients(
|
|
cham_tensor,
|
|
norm_tensor,
|
|
pred_loss_mean,
|
|
pred_norm_loss_mean,
|
|
points_normals.cloud1.points_list(),
|
|
points_normals.p1,
|
|
points_normals.cloud2.points_list(),
|
|
points_normals.p2,
|
|
points_normals.cloud1.normals_list(),
|
|
points_normals.n1,
|
|
points_normals.cloud2.normals_list(),
|
|
points_normals.n2,
|
|
x_lengths,
|
|
y_lengths,
|
|
)
|
|
|
|
def test_chamfer_pointcloud_object_withnormals(self):
|
|
N = 5
|
|
P1, P2 = 100, 100
|
|
device = get_random_cuda_device()
|
|
|
|
reductions = [
|
|
("sum", "sum"),
|
|
("mean", "sum"),
|
|
("sum", "mean"),
|
|
("mean", "mean"),
|
|
("sum", None),
|
|
("mean", None),
|
|
(None, None),
|
|
]
|
|
for point_reduction, batch_reduction in reductions:
|
|
# Reinitialize all the tensors so that the
|
|
# backward pass can be computed.
|
|
points_normals = TestChamfer.init_pointclouds(
|
|
N, P1, P2, device, allow_empty=False
|
|
)
|
|
|
|
# Chamfer with pointclouds as input.
|
|
cham_cloud, norm_cloud = chamfer_distance(
|
|
points_normals.cloud1,
|
|
points_normals.cloud2,
|
|
point_reduction=point_reduction,
|
|
batch_reduction=batch_reduction,
|
|
)
|
|
|
|
# Chamfer with tensors as input.
|
|
cham_tensor, norm_tensor = chamfer_distance(
|
|
points_normals.p1,
|
|
points_normals.p2,
|
|
x_lengths=points_normals.p1_lengths,
|
|
y_lengths=points_normals.p2_lengths,
|
|
x_normals=points_normals.n1,
|
|
y_normals=points_normals.n2,
|
|
point_reduction=point_reduction,
|
|
batch_reduction=batch_reduction,
|
|
)
|
|
|
|
if point_reduction is None:
|
|
cham_tensor_bidirectional = torch.hstack(
|
|
[cham_tensor[0], cham_tensor[1]]
|
|
)
|
|
norm_tensor_bidirectional = torch.hstack(
|
|
[norm_tensor[0], norm_tensor[1]]
|
|
)
|
|
cham_cloud_bidirectional = torch.hstack([cham_cloud[0], cham_cloud[1]])
|
|
norm_cloud_bidirectional = torch.hstack([norm_cloud[0], norm_cloud[1]])
|
|
self.assertClose(cham_cloud_bidirectional, cham_tensor_bidirectional)
|
|
self.assertClose(norm_cloud_bidirectional, norm_tensor_bidirectional)
|
|
self._check_gradients(
|
|
cham_tensor_bidirectional,
|
|
norm_tensor_bidirectional,
|
|
cham_cloud_bidirectional,
|
|
norm_cloud_bidirectional,
|
|
points_normals.cloud1.points_list(),
|
|
points_normals.p1,
|
|
points_normals.cloud2.points_list(),
|
|
points_normals.p2,
|
|
points_normals.cloud1.normals_list(),
|
|
points_normals.n1,
|
|
points_normals.cloud2.normals_list(),
|
|
points_normals.n2,
|
|
points_normals.p1_lengths,
|
|
points_normals.p2_lengths,
|
|
)
|
|
else:
|
|
self.assertClose(cham_cloud, cham_tensor)
|
|
self.assertClose(norm_cloud, norm_tensor)
|
|
self._check_gradients(
|
|
cham_tensor,
|
|
norm_tensor,
|
|
cham_cloud,
|
|
norm_cloud,
|
|
points_normals.cloud1.points_list(),
|
|
points_normals.p1,
|
|
points_normals.cloud2.points_list(),
|
|
points_normals.p2,
|
|
points_normals.cloud1.normals_list(),
|
|
points_normals.n1,
|
|
points_normals.cloud2.normals_list(),
|
|
points_normals.n2,
|
|
points_normals.p1_lengths,
|
|
points_normals.p2_lengths,
|
|
)
|
|
|
|
def test_chamfer_pointcloud_object_nonormals(self):
|
|
N = 5
|
|
P1, P2 = 100, 100
|
|
device = get_random_cuda_device()
|
|
|
|
reductions = [
|
|
("sum", "sum"),
|
|
("mean", "sum"),
|
|
("sum", "mean"),
|
|
("mean", "mean"),
|
|
("sum", None),
|
|
("mean", None),
|
|
(None, None),
|
|
]
|
|
for point_reduction, batch_reduction in reductions:
|
|
# Reinitialize all the tensors so that the
|
|
# backward pass can be computed.
|
|
points_normals = TestChamfer.init_pointclouds(
|
|
N, P1, P2, device, allow_empty=False
|
|
)
|
|
|
|
# Chamfer with pointclouds as input.
|
|
cham_cloud, _ = chamfer_distance(
|
|
points_normals.cloud1,
|
|
points_normals.cloud2,
|
|
point_reduction=point_reduction,
|
|
batch_reduction=batch_reduction,
|
|
)
|
|
|
|
# Chamfer with tensors as input.
|
|
cham_tensor, _ = chamfer_distance(
|
|
points_normals.p1,
|
|
points_normals.p2,
|
|
x_lengths=points_normals.p1_lengths,
|
|
y_lengths=points_normals.p2_lengths,
|
|
point_reduction=point_reduction,
|
|
batch_reduction=batch_reduction,
|
|
)
|
|
|
|
if point_reduction is None:
|
|
cham_tensor_bidirectional = torch.hstack(
|
|
[cham_tensor[0], cham_tensor[1]]
|
|
)
|
|
cham_cloud_bidirectional = torch.hstack([cham_cloud[0], cham_cloud[1]])
|
|
self.assertClose(cham_cloud_bidirectional, cham_tensor_bidirectional)
|
|
self._check_gradients(
|
|
cham_tensor_bidirectional,
|
|
None,
|
|
cham_cloud_bidirectional,
|
|
None,
|
|
points_normals.cloud1.points_list(),
|
|
points_normals.p1,
|
|
points_normals.cloud2.points_list(),
|
|
points_normals.p2,
|
|
lengths1=points_normals.p1_lengths,
|
|
lengths2=points_normals.p2_lengths,
|
|
)
|
|
else:
|
|
self.assertClose(cham_cloud, cham_tensor)
|
|
self._check_gradients(
|
|
cham_tensor,
|
|
None,
|
|
cham_cloud,
|
|
None,
|
|
points_normals.cloud1.points_list(),
|
|
points_normals.p1,
|
|
points_normals.cloud2.points_list(),
|
|
points_normals.p2,
|
|
lengths1=points_normals.p1_lengths,
|
|
lengths2=points_normals.p2_lengths,
|
|
)
|
|
|
|
def test_chamfer_point_reduction_mean(self):
|
|
"""
|
|
Compare output of vectorized chamfer loss with naive implementation
|
|
for point_reduction = "mean" and batch_reduction = None.
|
|
"""
|
|
N, max_P1, max_P2 = 7, 10, 18
|
|
device = get_random_cuda_device()
|
|
points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
|
|
p1 = points_normals.p1
|
|
p2 = points_normals.p2
|
|
p1_normals = points_normals.n1
|
|
p2_normals = points_normals.n2
|
|
weights = points_normals.weights
|
|
p11 = p1.detach().clone()
|
|
p22 = p2.detach().clone()
|
|
p11.requires_grad = True
|
|
p22.requires_grad = True
|
|
P1 = p1.shape[1]
|
|
P2 = p2.shape[1]
|
|
|
|
pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
|
|
p1, p2, x_normals=p1_normals, y_normals=p2_normals
|
|
)
|
|
|
|
# point_reduction = "mean".
|
|
loss, loss_norm = chamfer_distance(
|
|
p11,
|
|
p22,
|
|
x_normals=p1_normals,
|
|
y_normals=p2_normals,
|
|
weights=weights,
|
|
batch_reduction=None,
|
|
point_reduction="mean",
|
|
)
|
|
pred_loss_mean = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2
|
|
pred_loss_mean *= weights
|
|
self.assertClose(loss, pred_loss_mean)
|
|
|
|
pred_loss_norm_mean = (
|
|
pred_loss_norm[0].sum(1) / P1 + pred_loss_norm[1].sum(1) / P2
|
|
)
|
|
pred_loss_norm_mean *= weights
|
|
self.assertClose(loss_norm, pred_loss_norm_mean)
|
|
|
|
# Check gradients
|
|
self._check_gradients(
|
|
loss, loss_norm, pred_loss_mean, pred_loss_norm_mean, p1, p11, p2, p22
|
|
)
|
|
|
|
def test_single_direction_chamfer_point_reduction_mean(self):
|
|
"""
|
|
Compare output of vectorized chamfer loss with naive implementation
|
|
for point_reduction = "mean" and batch_reduction = None.
|
|
"""
|
|
N, max_P1, max_P2 = 7, 10, 18
|
|
device = get_random_cuda_device()
|
|
points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
|
|
p1 = points_normals.p1
|
|
p2 = points_normals.p2
|
|
p1_normals = points_normals.n1
|
|
p2_normals = points_normals.n2
|
|
weights = points_normals.weights
|
|
p11 = p1.detach().clone()
|
|
p22 = p2.detach().clone()
|
|
p11.requires_grad = True
|
|
p22.requires_grad = True
|
|
P1 = p1.shape[1]
|
|
|
|
pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
|
|
p1, p2, x_normals=p1_normals, y_normals=p2_normals
|
|
)
|
|
|
|
# point_reduction = "mean".
|
|
loss, loss_norm = chamfer_distance(
|
|
p11,
|
|
p22,
|
|
x_normals=p1_normals,
|
|
y_normals=p2_normals,
|
|
weights=weights,
|
|
batch_reduction=None,
|
|
point_reduction="mean",
|
|
single_directional=True,
|
|
)
|
|
pred_loss_mean = pred_loss[0].sum(1) / P1
|
|
pred_loss_mean *= weights
|
|
self.assertClose(loss, pred_loss_mean)
|
|
|
|
pred_loss_norm_mean = pred_loss_norm[0].sum(1) / P1
|
|
pred_loss_norm_mean *= weights
|
|
self.assertClose(loss_norm, pred_loss_norm_mean)
|
|
|
|
# Check gradients
|
|
self._check_gradients(
|
|
loss, loss_norm, pred_loss_mean, pred_loss_norm_mean, p1, p11, p2, p22
|
|
)
|
|
|
|
def test_chamfer_point_reduction_sum(self):
|
|
"""
|
|
Compare output of vectorized chamfer loss with naive implementation
|
|
for point_reduction = "sum" and batch_reduction = None.
|
|
"""
|
|
N, P1, P2 = 7, 10, 18
|
|
device = get_random_cuda_device()
|
|
points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
|
|
p1 = points_normals.p1
|
|
p2 = points_normals.p2
|
|
p1_normals = points_normals.n1
|
|
p2_normals = points_normals.n2
|
|
weights = points_normals.weights
|
|
p11 = p1.detach().clone()
|
|
p22 = p2.detach().clone()
|
|
p11.requires_grad = True
|
|
p22.requires_grad = True
|
|
|
|
pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
|
|
p1, p2, x_normals=p1_normals, y_normals=p2_normals
|
|
)
|
|
|
|
loss, loss_norm = chamfer_distance(
|
|
p11,
|
|
p22,
|
|
x_normals=p1_normals,
|
|
y_normals=p2_normals,
|
|
weights=weights,
|
|
batch_reduction=None,
|
|
point_reduction="sum",
|
|
)
|
|
pred_loss_sum = pred_loss[0].sum(1) + pred_loss[1].sum(1)
|
|
pred_loss_sum *= weights
|
|
self.assertClose(loss, pred_loss_sum)
|
|
|
|
pred_loss_norm_sum = pred_loss_norm[0].sum(1) + pred_loss_norm[1].sum(1)
|
|
pred_loss_norm_sum *= weights
|
|
self.assertClose(loss_norm, pred_loss_norm_sum)
|
|
|
|
# Check gradients
|
|
self._check_gradients(
|
|
loss, loss_norm, pred_loss_sum, pred_loss_norm_sum, p1, p11, p2, p22
|
|
)
|
|
|
|
def test_single_directional_chamfer_point_reduction_sum(self):
|
|
"""
|
|
Compare output of vectorized single directional chamfer loss with naive implementation
|
|
for point_reduction = "sum" and batch_reduction = None.
|
|
"""
|
|
N, P1, P2 = 7, 10, 18
|
|
device = get_random_cuda_device()
|
|
points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
|
|
p1 = points_normals.p1
|
|
p2 = points_normals.p2
|
|
p1_normals = points_normals.n1
|
|
p2_normals = points_normals.n2
|
|
weights = points_normals.weights
|
|
p11 = p1.detach().clone()
|
|
p22 = p2.detach().clone()
|
|
p11.requires_grad = True
|
|
p22.requires_grad = True
|
|
|
|
pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
|
|
p1, p2, x_normals=p1_normals, y_normals=p2_normals
|
|
)
|
|
|
|
loss, loss_norm = chamfer_distance(
|
|
p11,
|
|
p22,
|
|
x_normals=p1_normals,
|
|
y_normals=p2_normals,
|
|
weights=weights,
|
|
batch_reduction=None,
|
|
point_reduction="sum",
|
|
single_directional=True,
|
|
)
|
|
pred_loss_sum = pred_loss[0].sum(1)
|
|
pred_loss_sum *= weights
|
|
self.assertClose(loss, pred_loss_sum)
|
|
|
|
pred_loss_norm_sum = pred_loss_norm[0].sum(1)
|
|
pred_loss_norm_sum *= weights
|
|
self.assertClose(loss_norm, pred_loss_norm_sum)
|
|
|
|
# Check gradients
|
|
self._check_gradients(
|
|
loss, loss_norm, pred_loss_sum, pred_loss_norm_sum, p1, p11, p2, p22
|
|
)
|
|
|
|
def test_chamfer_point_reduction_none(self):
|
|
"""
|
|
Compare output of vectorized chamfer loss with naive implementation
|
|
for point_reduction = None and batch_reduction = None.
|
|
"""
|
|
N, max_P1, max_P2 = 7, 10, 18
|
|
device = get_random_cuda_device()
|
|
points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
|
|
p1 = points_normals.p1
|
|
p2 = points_normals.p2
|
|
p1_normals = points_normals.n1
|
|
p2_normals = points_normals.n2
|
|
p11 = p1.detach().clone()
|
|
p22 = p2.detach().clone()
|
|
p11.requires_grad = True
|
|
p22.requires_grad = True
|
|
|
|
pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
|
|
p1, p2, x_normals=p1_normals, y_normals=p2_normals
|
|
)
|
|
|
|
# point_reduction = None
|
|
loss, loss_norm = chamfer_distance(
|
|
p11,
|
|
p22,
|
|
x_normals=p1_normals,
|
|
y_normals=p2_normals,
|
|
batch_reduction=None,
|
|
point_reduction=None,
|
|
)
|
|
|
|
loss_bidirectional = torch.hstack([loss[0], loss[1]])
|
|
pred_loss_bidirectional = torch.hstack([pred_loss[0], pred_loss[1]])
|
|
loss_norm_bidirectional = torch.hstack([loss_norm[0], loss_norm[1]])
|
|
pred_loss_norm_bidirectional = torch.hstack(
|
|
[pred_loss_norm[0], pred_loss_norm[1]]
|
|
)
|
|
|
|
self.assertClose(loss_bidirectional, pred_loss_bidirectional)
|
|
self.assertClose(loss_norm_bidirectional, pred_loss_norm_bidirectional)
|
|
|
|
# Check gradients
|
|
self._check_gradients(
|
|
loss_bidirectional,
|
|
loss_norm_bidirectional,
|
|
pred_loss_bidirectional,
|
|
pred_loss_norm_bidirectional,
|
|
p1,
|
|
p11,
|
|
p2,
|
|
p22,
|
|
)
|
|
|
|
def test_single_direction_chamfer_point_reduction_none(self):
|
|
"""
|
|
Compare output of vectorized chamfer loss with naive implementation
|
|
for point_reduction = None and batch_reduction = None.
|
|
"""
|
|
N, max_P1, max_P2 = 7, 10, 18
|
|
device = get_random_cuda_device()
|
|
points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
|
|
p1 = points_normals.p1
|
|
p2 = points_normals.p2
|
|
p1_normals = points_normals.n1
|
|
p2_normals = points_normals.n2
|
|
p11 = p1.detach().clone()
|
|
p22 = p2.detach().clone()
|
|
p11.requires_grad = True
|
|
p22.requires_grad = True
|
|
|
|
pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
|
|
p1, p2, x_normals=p1_normals, y_normals=p2_normals
|
|
)
|
|
|
|
# point_reduction = None
|
|
loss, loss_norm = chamfer_distance(
|
|
p11,
|
|
p22,
|
|
x_normals=p1_normals,
|
|
y_normals=p2_normals,
|
|
batch_reduction=None,
|
|
point_reduction=None,
|
|
single_directional=True,
|
|
)
|
|
|
|
self.assertClose(loss, pred_loss[0])
|
|
self.assertClose(loss_norm, pred_loss_norm[0])
|
|
|
|
# Check gradients
|
|
self._check_gradients(
|
|
loss, loss_norm, pred_loss[0], pred_loss_norm[0], p1, p11, p2, p22
|
|
)
|
|
|
|
def test_chamfer_point_reduction_max(self):
|
|
"""
|
|
Compare output of vectorized chamfer loss with naive implementation
|
|
for point_reduction = "max" and batch_reduction = None.
|
|
"""
|
|
N, P1, P2 = 7, 10, 18
|
|
device = get_random_cuda_device()
|
|
points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
|
|
p1 = points_normals.p1
|
|
p2 = points_normals.p2
|
|
weights = points_normals.weights
|
|
p11 = p1.detach().clone()
|
|
p22 = p2.detach().clone()
|
|
p11.requires_grad = True
|
|
p22.requires_grad = True
|
|
|
|
pred_loss, unused_pred_loss_norm = TestChamfer.chamfer_distance_naive(
|
|
p1, p2, x_normals=None, y_normals=None
|
|
)
|
|
|
|
loss, loss_norm = chamfer_distance(
|
|
p11,
|
|
p22,
|
|
x_normals=None,
|
|
y_normals=None,
|
|
weights=weights,
|
|
batch_reduction=None,
|
|
point_reduction="max",
|
|
)
|
|
pred_loss_max = torch.maximum(
|
|
pred_loss[0].max(1).values, pred_loss[1].max(1).values
|
|
)
|
|
pred_loss_max *= weights
|
|
self.assertClose(loss, pred_loss_max)
|
|
|
|
self.assertIsNone(loss_norm)
|
|
|
|
# Check gradients
|
|
self._check_gradients(loss, loss_norm, pred_loss_max, None, p1, p11, p2, p22)
|
|
|
|
def test_single_directional_chamfer_point_reduction_max(self):
|
|
"""
|
|
Compare output of vectorized single directional chamfer loss with naive implementation
|
|
for point_reduction = "max" and batch_reduction = None.
|
|
"""
|
|
N, P1, P2 = 7, 10, 18
|
|
device = get_random_cuda_device()
|
|
points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
|
|
p1 = points_normals.p1
|
|
p2 = points_normals.p2
|
|
weights = points_normals.weights
|
|
p11 = p1.detach().clone()
|
|
p22 = p2.detach().clone()
|
|
p11.requires_grad = True
|
|
p22.requires_grad = True
|
|
|
|
pred_loss, unused_pred_loss_norm = TestChamfer.chamfer_distance_naive(
|
|
p1, p2, x_normals=None, y_normals=None
|
|
)
|
|
|
|
loss, loss_norm = chamfer_distance(
|
|
p11,
|
|
p22,
|
|
x_normals=None,
|
|
y_normals=None,
|
|
weights=weights,
|
|
batch_reduction=None,
|
|
point_reduction="max",
|
|
single_directional=True,
|
|
)
|
|
pred_loss_max = pred_loss[0].max(1).values
|
|
pred_loss_max *= weights
|
|
self.assertClose(loss, pred_loss_max)
|
|
|
|
self.assertIsNone(loss_norm)
|
|
|
|
# Check gradients
|
|
self._check_gradients(loss, loss_norm, pred_loss_max, None, p1, p11, p2, p22)
|
|
|
|
def _check_gradients(
|
|
self,
|
|
loss,
|
|
loss_norm,
|
|
pred_loss,
|
|
pred_loss_norm,
|
|
x1,
|
|
x2,
|
|
y1,
|
|
y2,
|
|
xn1=None, # normals
|
|
xn2=None, # normals
|
|
yn1=None, # normals
|
|
yn2=None, # normals
|
|
lengths1=None,
|
|
lengths2=None,
|
|
):
|
|
"""
|
|
x1 and x2 can have different types based on the leaf node used in the calculation:
|
|
e.g. x1 may be a list of tensors whereas x2 is a padded tensor.
|
|
This also applies for the pairs: (y1, y2), (xn1, xn2), (yn1, yn2).
|
|
"""
|
|
grad_loss = torch.rand(loss.shape, device=loss.device, dtype=loss.dtype)
|
|
|
|
# Loss for normals is optional. Iniitalize to 0.
|
|
norm_loss_term = pred_norm_loss_term = 0.0
|
|
if loss_norm is not None and pred_loss_norm is not None:
|
|
grad_normals = torch.rand(
|
|
loss_norm.shape, device=loss.device, dtype=loss.dtype
|
|
)
|
|
norm_loss_term = loss_norm * grad_normals
|
|
pred_norm_loss_term = pred_loss_norm * grad_normals
|
|
|
|
l1 = (loss * grad_loss) + norm_loss_term
|
|
l1.sum().backward()
|
|
l2 = (pred_loss * grad_loss) + pred_norm_loss_term
|
|
l2.sum().backward()
|
|
|
|
self._check_grad_by_type(x1, x2, lengths1)
|
|
self._check_grad_by_type(y1, y2, lengths2)
|
|
|
|
# If leaf nodes for normals are passed in, check their gradients.
|
|
if all(n is not None for n in [xn1, xn2, yn1, yn2]):
|
|
self._check_grad_by_type(xn1, xn2, lengths1)
|
|
self._check_grad_by_type(yn1, yn2, lengths2)
|
|
|
|
def _check_grad_by_type(self, x1, x2, lengths=None):
|
|
"""
|
|
x1 and x2 can be of different types e.g. list or tensor - compare appropriately
|
|
based on the types.
|
|
"""
|
|
error_msg = "All values for gradient checks must be tensors or lists of tensors"
|
|
|
|
if all(isinstance(p, list) for p in [x1, x2]):
|
|
# Lists of tensors
|
|
for i in range(len(x1)):
|
|
self.assertClose(x1[i].grad, x2[i].grad)
|
|
elif isinstance(x1, list) and torch.is_tensor(x2):
|
|
self.assertIsNotNone(lengths) # lengths is required
|
|
|
|
# List of tensors vs padded tensor
|
|
for i in range(len(x1)):
|
|
self.assertClose(x1[i].grad, x2.grad[i, : lengths[i]], atol=1e-7)
|
|
self.assertTrue(x2.grad[i, lengths[i] :].sum().item() == 0.0)
|
|
elif all(torch.is_tensor(p) for p in [x1, x2]):
|
|
# Two tensors
|
|
self.assertClose(x1.grad, x2.grad)
|
|
else:
|
|
raise ValueError(error_msg)
|
|
|
|
def test_chamfer_joint_reduction(self):
|
|
"""
|
|
Compare output of vectorized chamfer loss with naive implementation
|
|
when batch_reduction in ["mean", "sum"] and
|
|
point_reduction in ["mean", "sum"].
|
|
"""
|
|
N, max_P1, max_P2 = 7, 10, 18
|
|
device = get_random_cuda_device()
|
|
|
|
points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device)
|
|
p1 = points_normals.p1
|
|
p2 = points_normals.p2
|
|
p1_normals = points_normals.n1
|
|
p2_normals = points_normals.n2
|
|
weights = points_normals.weights
|
|
|
|
P1 = p1.shape[1]
|
|
P2 = p2.shape[1]
|
|
|
|
pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive(
|
|
p1, p2, x_normals=p1_normals, y_normals=p2_normals
|
|
)
|
|
|
|
# batch_reduction = "sum", point_reduction = "sum".
|
|
loss, loss_norm = chamfer_distance(
|
|
p1,
|
|
p2,
|
|
x_normals=p1_normals,
|
|
y_normals=p2_normals,
|
|
weights=weights,
|
|
batch_reduction="sum",
|
|
point_reduction="sum",
|
|
)
|
|
pred_loss[0] *= weights.view(N, 1)
|
|
pred_loss[1] *= weights.view(N, 1)
|
|
pred_loss_sum = pred_loss[0].sum(1) + pred_loss[1].sum(1) # point sum
|
|
pred_loss_sum = pred_loss_sum.sum() # batch sum
|
|
self.assertClose(loss, pred_loss_sum)
|
|
|
|
pred_loss_norm[0] *= weights.view(N, 1)
|
|
pred_loss_norm[1] *= weights.view(N, 1)
|
|
pred_loss_norm_sum = pred_loss_norm[0].sum(1) + pred_loss_norm[1].sum(
|
|
1
|
|
) # point sum.
|
|
pred_loss_norm_sum = pred_loss_norm_sum.sum() # batch sum
|
|
self.assertClose(loss_norm, pred_loss_norm_sum)
|
|
|
|
# batch_reduction = "mean", point_reduction = "sum".
|
|
loss, loss_norm = chamfer_distance(
|
|
p1,
|
|
p2,
|
|
x_normals=p1_normals,
|
|
y_normals=p2_normals,
|
|
weights=weights,
|
|
batch_reduction="mean",
|
|
point_reduction="sum",
|
|
)
|
|
pred_loss_sum /= weights.sum()
|
|
self.assertClose(loss, pred_loss_sum)
|
|
|
|
pred_loss_norm_sum /= weights.sum()
|
|
self.assertClose(loss_norm, pred_loss_norm_sum)
|
|
|
|
# batch_reduction = "sum", point_reduction = "mean".
|
|
loss, loss_norm = chamfer_distance(
|
|
p1,
|
|
p2,
|
|
x_normals=p1_normals,
|
|
y_normals=p2_normals,
|
|
weights=weights,
|
|
batch_reduction="sum",
|
|
point_reduction="mean",
|
|
)
|
|
pred_loss_mean = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2
|
|
pred_loss_mean = pred_loss_mean.sum()
|
|
self.assertClose(loss, pred_loss_mean)
|
|
|
|
pred_loss_norm_mean = (
|
|
pred_loss_norm[0].sum(1) / P1 + pred_loss_norm[1].sum(1) / P2
|
|
)
|
|
pred_loss_norm_mean = pred_loss_norm_mean.sum()
|
|
self.assertClose(loss_norm, pred_loss_norm_mean)
|
|
|
|
# batch_reduction = "mean", point_reduction = "mean". This is the default.
|
|
loss, loss_norm = chamfer_distance(
|
|
p1,
|
|
p2,
|
|
x_normals=p1_normals,
|
|
y_normals=p2_normals,
|
|
weights=weights,
|
|
batch_reduction="mean",
|
|
point_reduction="mean",
|
|
)
|
|
pred_loss_mean /= weights.sum()
|
|
self.assertClose(loss, pred_loss_mean)
|
|
|
|
pred_loss_norm_mean /= weights.sum()
|
|
self.assertClose(loss_norm, pred_loss_norm_mean)
|
|
|
|
# Error when batch_reduction is not in ["mean", "sum"] or None.
|
|
with self.assertRaisesRegex(ValueError, "batch_reduction must be one of"):
|
|
chamfer_distance(p1, p2, weights=weights, batch_reduction="max")
|
|
|
|
# Error when point_reduction is not in ["mean", "sum", "max"] or None.
|
|
with self.assertRaisesRegex(ValueError, "point_reduction must be one of"):
|
|
chamfer_distance(p1, p2, weights=weights, point_reduction="min")
|
|
|
|
def test_incorrect_weights(self):
|
|
N, P1, P2 = 16, 64, 128
|
|
device = get_random_cuda_device()
|
|
p1 = torch.rand(
|
|
(N, P1, 3), dtype=torch.float32, device=device, requires_grad=True
|
|
)
|
|
p2 = torch.rand(
|
|
(N, P2, 3), dtype=torch.float32, device=device, requires_grad=True
|
|
)
|
|
|
|
weights = torch.zeros((N,), dtype=torch.float32, device=device)
|
|
loss, loss_norm = chamfer_distance(
|
|
p1, p2, weights=weights, batch_reduction="mean"
|
|
)
|
|
self.assertClose(loss.cpu(), torch.zeros(()))
|
|
self.assertTrue(loss.requires_grad)
|
|
self.assertClose(loss_norm.cpu(), torch.zeros(()))
|
|
self.assertTrue(loss_norm.requires_grad)
|
|
|
|
loss, loss_norm = chamfer_distance(
|
|
p1, p2, weights=weights, batch_reduction=None
|
|
)
|
|
self.assertClose(loss.cpu(), torch.zeros((N, N)))
|
|
self.assertTrue(loss.requires_grad)
|
|
self.assertClose(loss_norm.cpu(), torch.zeros((N, N)))
|
|
self.assertTrue(loss_norm.requires_grad)
|
|
|
|
weights = torch.ones((N,), dtype=torch.float32, device=device) * -1
|
|
with self.assertRaises(ValueError):
|
|
loss, loss_norm = chamfer_distance(p1, p2, weights=weights)
|
|
|
|
weights = torch.zeros((N - 1,), dtype=torch.float32, device=device)
|
|
with self.assertRaises(ValueError):
|
|
loss, loss_norm = chamfer_distance(p1, p2, weights=weights)
|
|
|
|
def test_incorrect_inputs(self):
|
|
N, P1, P2 = 7, 10, 18
|
|
device = get_random_cuda_device()
|
|
points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
|
|
p1 = points_normals.p1
|
|
p2 = points_normals.p2
|
|
p1_normals = points_normals.n1
|
|
|
|
# Normals of wrong shape
|
|
with self.assertRaisesRegex(ValueError, "Expected normals to be of shape"):
|
|
chamfer_distance(p1, p2, x_normals=p1_normals[None])
|
|
|
|
# Points of wrong shape
|
|
with self.assertRaisesRegex(ValueError, "Expected points to be of shape"):
|
|
chamfer_distance(p1[None], p2)
|
|
|
|
# Lengths of wrong shape
|
|
with self.assertRaisesRegex(ValueError, "Expected lengths to be of shape"):
|
|
chamfer_distance(p1, p2, x_lengths=torch.tensor([1, 2, 3], device=device))
|
|
|
|
# Points are not a tensor or Pointclouds
|
|
with self.assertRaisesRegex(ValueError, "Pointclouds objects or torch.Tensor"):
|
|
chamfer_distance(x=[1, 1, 1], y=[1, 1, 1])
|
|
|
|
def test_invalid_norm(self):
|
|
N, P1, P2 = 7, 10, 18
|
|
device = get_random_cuda_device()
|
|
points_normals = TestChamfer.init_pointclouds(N, P1, P2, device)
|
|
p1 = points_normals.p1
|
|
p2 = points_normals.p2
|
|
|
|
with self.assertRaisesRegex(ValueError, "Support for 1 or 2 norm."):
|
|
chamfer_distance(p1, p2, norm=0)
|
|
|
|
with self.assertRaisesRegex(ValueError, "Support for 1 or 2 norm."):
|
|
chamfer_distance(p1, p2, norm=3)
|
|
|
|
def test_empty_clouds(self):
|
|
# Check that point_reduction doesn't divide by zero
|
|
points1 = Pointclouds(points=[torch.zeros(0, 3), torch.zeros(10, 3)])
|
|
points2 = Pointclouds(points=torch.ones(2, 40, 3))
|
|
loss, _ = chamfer_distance(points1, points2, batch_reduction=None)
|
|
self.assertClose(loss, torch.tensor([0.0, 6.0]))
|
|
|
|
# Check that batch_reduction doesn't divide by zero
|
|
loss2, _ = chamfer_distance(Pointclouds([]), Pointclouds([]))
|
|
self.assertClose(loss2, torch.tensor(0.0))
|
|
|
|
@staticmethod
|
|
def chamfer_with_init(
|
|
batch_size: int,
|
|
P1: int,
|
|
P2: int,
|
|
return_normals: bool,
|
|
homogeneous: bool,
|
|
device="cpu",
|
|
):
|
|
points_normals = TestChamfer.init_pointclouds(batch_size, P1, P2, device=device)
|
|
l1 = points_normals.p1_lengths
|
|
l2 = points_normals.p2_lengths
|
|
if homogeneous:
|
|
# Set lengths to None so in Chamfer it assumes
|
|
# there is no padding.
|
|
l1 = l2 = None
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
def loss():
|
|
loss, loss_normals = chamfer_distance(
|
|
points_normals.p1,
|
|
points_normals.p2,
|
|
x_lengths=l1,
|
|
y_lengths=l2,
|
|
x_normals=points_normals.n1,
|
|
y_normals=points_normals.n2,
|
|
weights=points_normals.weights,
|
|
)
|
|
torch.cuda.synchronize()
|
|
|
|
return loss
|
|
|
|
@staticmethod
|
|
def chamfer_naive_with_init(
|
|
batch_size: int, P1: int, P2: int, return_normals: bool, device="cpu"
|
|
):
|
|
points_normals = TestChamfer.init_pointclouds(batch_size, P1, P2, device=device)
|
|
torch.cuda.synchronize()
|
|
|
|
def loss():
|
|
loss, loss_normals = TestChamfer.chamfer_distance_naive(
|
|
points_normals.p1,
|
|
points_normals.p2,
|
|
x_normals=points_normals.n1,
|
|
y_normals=points_normals.n2,
|
|
)
|
|
torch.cuda.synchronize()
|
|
|
|
return loss
|