mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-07-31 10:52:50 +08:00
Summary: Move testing targets from pytorch3d/tests/TARGETS to pytorch3d/TARGETS. Reviewed By: shapovalov Differential Revision: D36186940 fbshipit-source-id: a4c52c4d99351f885e2b0bf870532d530324039b
232 lines
8.4 KiB
Python
232 lines
8.4 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import unittest
|
|
from itertools import product
|
|
|
|
import torch
|
|
from pytorch3d.ops import sample_points_from_meshes
|
|
from pytorch3d.ops.ball_query import ball_query
|
|
from pytorch3d.ops.knn import _KNN
|
|
from pytorch3d.utils import ico_sphere
|
|
|
|
from .common_testing import get_random_cuda_device, TestCaseMixin
|
|
|
|
|
|
class TestBallQuery(TestCaseMixin, unittest.TestCase):
|
|
def setUp(self) -> None:
|
|
super().setUp()
|
|
torch.manual_seed(1)
|
|
|
|
@staticmethod
|
|
def _ball_query_naive(
|
|
p1, p2, lengths1, lengths2, K: int, radius: float
|
|
) -> torch.Tensor:
|
|
"""
|
|
Naive PyTorch implementation of ball query.
|
|
"""
|
|
N, P1, D = p1.shape
|
|
_N, P2, _D = p2.shape
|
|
|
|
assert N == _N and D == _D
|
|
|
|
if lengths1 is None:
|
|
lengths1 = torch.full((N,), P1, dtype=torch.int64, device=p1.device)
|
|
if lengths2 is None:
|
|
lengths2 = torch.full((N,), P2, dtype=torch.int64, device=p1.device)
|
|
|
|
radius2 = radius * radius
|
|
dists = torch.zeros((N, P1, K), dtype=torch.float32, device=p1.device)
|
|
idx = torch.full((N, P1, K), fill_value=-1, dtype=torch.int64, device=p1.device)
|
|
|
|
# Iterate through the batches
|
|
for n in range(N):
|
|
num1 = lengths1[n].item()
|
|
num2 = lengths2[n].item()
|
|
|
|
# Iterate through the points in the p1
|
|
for i in range(num1):
|
|
# Iterate through the points in the p2
|
|
count = 0
|
|
for j in range(num2):
|
|
dist = p2[n, j] - p1[n, i]
|
|
dist2 = (dist * dist).sum()
|
|
if dist2 < radius2 and count < K:
|
|
dists[n, i, count] = dist2
|
|
idx[n, i, count] = j
|
|
count += 1
|
|
|
|
return _KNN(dists=dists, idx=idx, knn=None)
|
|
|
|
def _ball_query_vs_python_square_helper(self, device):
|
|
Ns = [1, 4]
|
|
Ds = [3, 5, 8]
|
|
P1s = [8, 24]
|
|
P2s = [8, 16, 32]
|
|
Ks = [1, 5]
|
|
Rs = [3, 5]
|
|
factors = [Ns, Ds, P1s, P2s, Ks, Rs]
|
|
for N, D, P1, P2, K, R in product(*factors):
|
|
x = torch.randn(N, P1, D, device=device, requires_grad=True)
|
|
x_cuda = x.clone().detach()
|
|
x_cuda.requires_grad_(True)
|
|
y = torch.randn(N, P2, D, device=device, requires_grad=True)
|
|
y_cuda = y.clone().detach()
|
|
y_cuda.requires_grad_(True)
|
|
|
|
# forward
|
|
out1 = self._ball_query_naive(
|
|
x, y, lengths1=None, lengths2=None, K=K, radius=R
|
|
)
|
|
out2 = ball_query(x_cuda, y_cuda, K=K, radius=R)
|
|
|
|
# Check dists
|
|
self.assertClose(out1.dists, out2.dists)
|
|
# Check idx
|
|
self.assertTrue(torch.all(out1.idx == out2.idx))
|
|
|
|
# backward
|
|
grad_dist = torch.ones((N, P1, K), dtype=torch.float32, device=device)
|
|
loss1 = (out1.dists * grad_dist).sum()
|
|
loss1.backward()
|
|
loss2 = (out2.dists * grad_dist).sum()
|
|
loss2.backward()
|
|
|
|
self.assertClose(x_cuda.grad, x.grad, atol=5e-6)
|
|
self.assertClose(y_cuda.grad, y.grad, atol=5e-6)
|
|
|
|
def test_ball_query_vs_python_square_cpu(self):
|
|
device = torch.device("cpu")
|
|
self._ball_query_vs_python_square_helper(device)
|
|
|
|
def test_ball_query_vs_python_square_cuda(self):
|
|
device = get_random_cuda_device()
|
|
self._ball_query_vs_python_square_helper(device)
|
|
|
|
def _ball_query_vs_python_ragged_helper(self, device):
|
|
Ns = [1, 4]
|
|
Ds = [3, 5, 8]
|
|
P1s = [8, 24]
|
|
P2s = [8, 16, 32]
|
|
Ks = [2, 3, 10]
|
|
Rs = [1.4, 5] # radius
|
|
factors = [Ns, Ds, P1s, P2s, Ks, Rs]
|
|
for N, D, P1, P2, K, R in product(*factors):
|
|
x = torch.rand((N, P1, D), device=device, requires_grad=True)
|
|
y = torch.rand((N, P2, D), device=device, requires_grad=True)
|
|
lengths1 = torch.randint(low=1, high=P1, size=(N,), device=device)
|
|
lengths2 = torch.randint(low=1, high=P2, size=(N,), device=device)
|
|
|
|
x_csrc = x.clone().detach()
|
|
x_csrc.requires_grad_(True)
|
|
y_csrc = y.clone().detach()
|
|
y_csrc.requires_grad_(True)
|
|
|
|
# forward
|
|
out1 = self._ball_query_naive(
|
|
x, y, lengths1=lengths1, lengths2=lengths2, K=K, radius=R
|
|
)
|
|
out2 = ball_query(
|
|
x_csrc,
|
|
y_csrc,
|
|
lengths1=lengths1,
|
|
lengths2=lengths2,
|
|
K=K,
|
|
radius=R,
|
|
)
|
|
|
|
self.assertClose(out1.idx, out2.idx)
|
|
self.assertClose(out1.dists, out2.dists)
|
|
|
|
# backward
|
|
grad_dist = torch.ones((N, P1, K), dtype=torch.float32, device=device)
|
|
loss1 = (out1.dists * grad_dist).sum()
|
|
loss1.backward()
|
|
loss2 = (out2.dists * grad_dist).sum()
|
|
loss2.backward()
|
|
|
|
self.assertClose(x_csrc.grad, x.grad, atol=5e-6)
|
|
self.assertClose(y_csrc.grad, y.grad, atol=5e-6)
|
|
|
|
def test_ball_query_vs_python_ragged_cpu(self):
|
|
device = torch.device("cpu")
|
|
self._ball_query_vs_python_ragged_helper(device)
|
|
|
|
def test_ball_query_vs_python_ragged_cuda(self):
|
|
device = get_random_cuda_device()
|
|
self._ball_query_vs_python_ragged_helper(device)
|
|
|
|
def test_ball_query_output_simple(self):
|
|
device = get_random_cuda_device()
|
|
N, P1, P2, K = 5, 8, 16, 4
|
|
sphere = ico_sphere(level=2, device=device).extend(N)
|
|
points_1 = sample_points_from_meshes(sphere, P1)
|
|
points_2 = sample_points_from_meshes(sphere, P2) * 5.0
|
|
radius = 6.0
|
|
|
|
naive_out = self._ball_query_naive(
|
|
points_1, points_2, lengths1=None, lengths2=None, K=K, radius=radius
|
|
)
|
|
cuda_out = ball_query(points_1, points_2, K=K, radius=radius)
|
|
|
|
# All points should have N sample neighbors as radius is large
|
|
# Zero is a valid index but can only be present once (i.e. no zero padding)
|
|
naive_out_zeros = (naive_out.idx == 0).sum(dim=-1).max()
|
|
cuda_out_zeros = (cuda_out.idx == 0).sum(dim=-1).max()
|
|
self.assertTrue(naive_out_zeros == 0 or naive_out_zeros == 1)
|
|
self.assertTrue(cuda_out_zeros == 0 or cuda_out_zeros == 1)
|
|
|
|
# All points should now have zero sample neighbors as radius is small
|
|
radius = 0.5
|
|
naive_out = self._ball_query_naive(
|
|
points_1, points_2, lengths1=None, lengths2=None, K=K, radius=radius
|
|
)
|
|
cuda_out = ball_query(points_1, points_2, K=K, radius=radius)
|
|
naive_out_allzeros = (naive_out.idx == -1).all()
|
|
cuda_out_allzeros = (cuda_out.idx == -1).sum()
|
|
self.assertTrue(naive_out_allzeros)
|
|
self.assertTrue(cuda_out_allzeros)
|
|
|
|
@staticmethod
|
|
def ball_query_square(
|
|
N: int, P1: int, P2: int, D: int, K: int, radius: float, device: str
|
|
):
|
|
device = torch.device(device)
|
|
pts1 = torch.randn(N, P1, D, device=device, requires_grad=True)
|
|
pts2 = torch.randn(N, P2, D, device=device, requires_grad=True)
|
|
grad_dists = torch.randn(N, P1, K, device=device)
|
|
torch.cuda.synchronize()
|
|
|
|
def output():
|
|
out = ball_query(pts1, pts2, K=K, radius=radius)
|
|
loss = (out.dists * grad_dists).sum()
|
|
loss.backward()
|
|
torch.cuda.synchronize()
|
|
|
|
return output
|
|
|
|
@staticmethod
|
|
def ball_query_ragged(
|
|
N: int, P1: int, P2: int, D: int, K: int, radius: float, device: str
|
|
):
|
|
device = torch.device(device)
|
|
pts1 = torch.rand((N, P1, D), device=device, requires_grad=True)
|
|
pts2 = torch.rand((N, P2, D), device=device, requires_grad=True)
|
|
lengths1 = torch.randint(low=1, high=P1, size=(N,), device=device)
|
|
lengths2 = torch.randint(low=1, high=P2, size=(N,), device=device)
|
|
grad_dists = torch.randn(N, P1, K, device=device)
|
|
torch.cuda.synchronize()
|
|
|
|
def output():
|
|
out = ball_query(
|
|
pts1, pts2, lengths1=lengths1, lengths2=lengths2, K=K, radius=radius
|
|
)
|
|
loss = (out.dists * grad_dists).sum()
|
|
loss.backward()
|
|
torch.cuda.synchronize()
|
|
|
|
return output
|