mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-01 03:12:49 +08:00
Summary: extracted blob loader added documentation for blob_loader did some refactoring on fields for detailed steps and discussions see: https://github.com/facebookresearch/pytorch3d/pull/1463 https://github.com/fairinternal/pixar_replay/pull/160 Reviewed By: bottler Differential Revision: D44061728 fbshipit-source-id: eefb21e9679003045d73729f96e6a93a1d4d2d51
143 lines
4.8 KiB
Python
143 lines
4.8 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
from pytorch3d.implicitron.dataset.utils import (
|
|
bbox_xywh_to_xyxy,
|
|
bbox_xyxy_to_xywh,
|
|
clamp_box_to_image_bounds_and_round,
|
|
crop_around_box,
|
|
get_1d_bounds,
|
|
get_bbox_from_mask,
|
|
get_clamp_bbox,
|
|
rescale_bbox,
|
|
resize_image,
|
|
)
|
|
|
|
from tests.common_testing import TestCaseMixin
|
|
|
|
|
|
class TestBBox(TestCaseMixin, unittest.TestCase):
|
|
def setUp(self):
|
|
torch.manual_seed(42)
|
|
|
|
def test_bbox_conversion(self):
|
|
bbox_xywh_list = torch.LongTensor(
|
|
[
|
|
[0, 0, 10, 20],
|
|
[10, 20, 5, 1],
|
|
[10, 20, 1, 1],
|
|
[5, 4, 0, 1],
|
|
]
|
|
)
|
|
for bbox_xywh in bbox_xywh_list:
|
|
bbox_xyxy = bbox_xywh_to_xyxy(bbox_xywh)
|
|
bbox_xywh_ = bbox_xyxy_to_xywh(bbox_xyxy)
|
|
bbox_xyxy_ = bbox_xywh_to_xyxy(bbox_xywh_)
|
|
self.assertClose(bbox_xywh_, bbox_xywh)
|
|
self.assertClose(bbox_xyxy, bbox_xyxy_)
|
|
|
|
def test_compare_to_expected(self):
|
|
bbox_xywh_to_xyxy_expected = torch.LongTensor(
|
|
[
|
|
[[0, 0, 10, 20], [0, 0, 10, 20]],
|
|
[[10, 20, 5, 1], [10, 20, 15, 21]],
|
|
[[10, 20, 1, 1], [10, 20, 11, 21]],
|
|
[[5, 4, 0, 1], [5, 4, 5, 5]],
|
|
]
|
|
)
|
|
for bbox_xywh, bbox_xyxy_expected in bbox_xywh_to_xyxy_expected:
|
|
self.assertClose(bbox_xywh_to_xyxy(bbox_xywh), bbox_xyxy_expected)
|
|
self.assertClose(bbox_xyxy_to_xywh(bbox_xyxy_expected), bbox_xywh)
|
|
|
|
clamp_amnt = 3
|
|
bbox_xywh_to_xyxy_clamped_expected = torch.LongTensor(
|
|
[
|
|
[[0, 0, 10, 20], [0, 0, 10, 20]],
|
|
[[10, 20, 5, 1], [10, 20, 15, 20 + clamp_amnt]],
|
|
[[10, 20, 1, 1], [10, 20, 10 + clamp_amnt, 20 + clamp_amnt]],
|
|
[[5, 4, 0, 1], [5, 4, 5 + clamp_amnt, 4 + clamp_amnt]],
|
|
]
|
|
)
|
|
for bbox_xywh, bbox_xyxy_expected in bbox_xywh_to_xyxy_clamped_expected:
|
|
self.assertClose(
|
|
bbox_xywh_to_xyxy(bbox_xywh, clamp_size=clamp_amnt),
|
|
bbox_xyxy_expected,
|
|
)
|
|
|
|
def test_mask_to_bbox(self):
|
|
mask = np.array(
|
|
[
|
|
[0, 0, 0, 0, 0, 0],
|
|
[0, 0, 1, 1, 0, 0],
|
|
[0, 0, 0, 0, 0, 0],
|
|
]
|
|
).astype(np.float32)
|
|
expected_bbox_xywh = [2, 1, 2, 1]
|
|
bbox_xywh = get_bbox_from_mask(mask, 0.5)
|
|
self.assertClose(bbox_xywh, expected_bbox_xywh)
|
|
|
|
def test_crop_around_box(self):
|
|
bbox = torch.LongTensor([0, 1, 2, 3]) # (x_min, y_min, x_max, y_max)
|
|
image = torch.LongTensor(
|
|
[
|
|
[0, 0, 10, 20],
|
|
[10, 20, 5, 1],
|
|
[10, 20, 1, 1],
|
|
[5, 4, 0, 1],
|
|
]
|
|
)
|
|
cropped = crop_around_box(image, bbox)
|
|
self.assertClose(cropped, image[1:3, 0:2])
|
|
|
|
def test_clamp_box_to_image_bounds_and_round(self):
|
|
bbox = torch.LongTensor([0, 1, 10, 12])
|
|
image_size = (5, 6)
|
|
expected_clamped_bbox = torch.LongTensor([0, 1, image_size[1], image_size[0]])
|
|
clamped_bbox = clamp_box_to_image_bounds_and_round(bbox, image_size)
|
|
self.assertClose(clamped_bbox, expected_clamped_bbox)
|
|
|
|
def test_get_clamp_bbox(self):
|
|
bbox_xywh = torch.LongTensor([1, 1, 4, 5])
|
|
clamped_bbox_xyxy = get_clamp_bbox(bbox_xywh, box_crop_context=2)
|
|
# size multiplied by 2 and added coordinates
|
|
self.assertClose(clamped_bbox_xyxy, torch.Tensor([-3, -4, 9, 11]))
|
|
|
|
def test_rescale_bbox(self):
|
|
bbox = torch.Tensor([0.0, 1.0, 3.0, 4.0])
|
|
original_resolution = (4, 4)
|
|
new_resolution = (8, 8) # twice bigger
|
|
rescaled_bbox = rescale_bbox(bbox, original_resolution, new_resolution)
|
|
self.assertClose(bbox * 2, rescaled_bbox)
|
|
|
|
def test_get_1d_bounds(self):
|
|
array = [0, 1, 2]
|
|
bounds = get_1d_bounds(array)
|
|
# make nonzero 1d bounds of image
|
|
self.assertClose(bounds, [1, 3])
|
|
|
|
def test_resize_image(self):
|
|
image = np.random.rand(3, 300, 500) # rgb image 300x500
|
|
expected_shape = (150, 250)
|
|
|
|
resized_image, scale, mask_crop = resize_image(
|
|
image, image_height=expected_shape[0], image_width=expected_shape[1]
|
|
)
|
|
|
|
original_shape = image.shape[-2:]
|
|
expected_scale = min(
|
|
expected_shape[0] / original_shape[0], expected_shape[1] / original_shape[1]
|
|
)
|
|
|
|
self.assertEqual(scale, expected_scale)
|
|
self.assertEqual(resized_image.shape[-2:], expected_shape)
|
|
self.assertEqual(mask_crop.shape[-2:], expected_shape)
|