# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import os import unittest import warnings from io import StringIO from pathlib import Path import torch from common_testing import TestCaseMixin from pytorch3d.io import load_obj, load_objs_as_meshes, save_obj from pytorch3d.io.mtl_io import ( _bilinear_interpolation_grid_sample, _bilinear_interpolation_vectorized, ) from pytorch3d.structures import Meshes, Textures, join_meshes_as_batch from pytorch3d.structures.meshes import join_mesh from pytorch3d.utils import torus class TestMeshObjIO(TestCaseMixin, unittest.TestCase): def test_load_obj_simple(self): obj_file = "\n".join( [ "# this is a comment", # Comments should be ignored. "v 0.1 0.2 0.3", "v 0.2 0.3 0.4", "v 0.3 0.4 0.5", "v 0.4 0.5 0.6", # some obj files have multiple spaces after v "f 1 2 3", "f 1 2 4 3 1", # Polygons should be split into triangles ] ) obj_file = StringIO(obj_file) verts, faces, aux = load_obj(obj_file) normals = aux.normals textures = aux.verts_uvs materials = aux.material_colors tex_maps = aux.texture_images expected_verts = torch.tensor( [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]], dtype=torch.float32, ) expected_faces = torch.tensor( [ [0, 1, 2], # First face [0, 1, 3], # Second face (polygon) [0, 3, 2], # Second face (polygon) [0, 2, 0], # Second face (polygon) ], dtype=torch.int64, ) self.assertTrue(torch.all(verts == expected_verts)) self.assertTrue(torch.all(faces.verts_idx == expected_faces)) padded_vals = -(torch.ones_like(faces.verts_idx)) self.assertTrue(torch.all(faces.normals_idx == padded_vals)) self.assertTrue(torch.all(faces.textures_idx == padded_vals)) self.assertTrue( torch.all(faces.materials_idx == -(torch.ones(len(expected_faces)))) ) self.assertTrue(normals is None) self.assertTrue(textures is None) self.assertTrue(materials is None) self.assertTrue(tex_maps is None) def test_load_obj_complex(self): obj_file = "\n".join( [ "# this is a comment", # Comments should be ignored. "v 0.1 0.2 0.3", "v 0.2 0.3 0.4", "v 0.3 0.4 0.5", "v 0.4 0.5 0.6", "vn 0.000000 0.000000 -1.000000", "vn -1.000000 -0.000000 -0.000000", "vn -0.000000 -0.000000 1.000000", # Normals should not be ignored. "v 0.5 0.6 0.7", "vt 0.749279 0.501284 0.0", # Some files add 0.0 - ignore this. "vt 0.999110 0.501077", "vt 0.999455 0.750380", "f 1 2 3", "f 1 2 4 3 5", # Polygons should be split into triangles "f 2/1/2 3/1/2 4/2/2", # Texture/normals are loaded correctly. "f -1 -2 1", # Negative indexing counts from the end. ] ) obj_file = StringIO(obj_file) verts, faces, aux = load_obj(obj_file) normals = aux.normals textures = aux.verts_uvs materials = aux.material_colors tex_maps = aux.texture_images expected_verts = torch.tensor( [ [0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6], [0.5, 0.6, 0.7], ], dtype=torch.float32, ) expected_faces = torch.tensor( [ [0, 1, 2], # First face [0, 1, 3], # Second face (polygon) [0, 3, 2], # Second face (polygon) [0, 2, 4], # Second face (polygon) [1, 2, 3], # Third face (normals / texture) [4, 3, 0], # Fourth face (negative indices) ], dtype=torch.int64, ) expected_normals = torch.tensor( [ [0.000000, 0.000000, -1.000000], [-1.000000, -0.000000, -0.000000], [-0.000000, -0.000000, 1.000000], ], dtype=torch.float32, ) expected_textures = torch.tensor( [[0.749279, 0.501284], [0.999110, 0.501077], [0.999455, 0.750380]], dtype=torch.float32, ) expected_faces_normals_idx = -( torch.ones_like(expected_faces, dtype=torch.int64) ) expected_faces_normals_idx[4, :] = torch.tensor([1, 1, 1], dtype=torch.int64) expected_faces_textures_idx = -( torch.ones_like(expected_faces, dtype=torch.int64) ) expected_faces_textures_idx[4, :] = torch.tensor([0, 0, 1], dtype=torch.int64) self.assertTrue(torch.all(verts == expected_verts)) self.assertTrue(torch.all(faces.verts_idx == expected_faces)) self.assertClose(normals, expected_normals) self.assertClose(textures, expected_textures) self.assertClose(faces.normals_idx, expected_faces_normals_idx) self.assertClose(faces.textures_idx, expected_faces_textures_idx) self.assertTrue(materials is None) self.assertTrue(tex_maps is None) def test_load_obj_normals_only(self): obj_file = "\n".join( [ "v 0.1 0.2 0.3", "v 0.2 0.3 0.4", "v 0.3 0.4 0.5", "v 0.4 0.5 0.6", "vn 0.000000 0.000000 -1.000000", "vn -1.000000 -0.000000 -0.000000", "f 2//1 3//1 4//2", ] ) obj_file = StringIO(obj_file) expected_faces_normals_idx = torch.tensor([[0, 0, 1]], dtype=torch.int64) expected_normals = torch.tensor( [[0.000000, 0.000000, -1.000000], [-1.000000, -0.000000, -0.000000]], dtype=torch.float32, ) expected_verts = torch.tensor( [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]], dtype=torch.float32, ) verts, faces, aux = load_obj(obj_file) normals = aux.normals textures = aux.verts_uvs materials = aux.material_colors tex_maps = aux.texture_images self.assertClose(faces.normals_idx, expected_faces_normals_idx) self.assertClose(normals, expected_normals) self.assertClose(verts, expected_verts) # Textures idx padded with -1. self.assertClose(faces.textures_idx, torch.ones_like(faces.verts_idx) * -1) self.assertTrue(textures is None) self.assertTrue(materials is None) self.assertTrue(tex_maps is None) def test_load_obj_textures_only(self): obj_file = "\n".join( [ "v 0.1 0.2 0.3", "v 0.2 0.3 0.4", "v 0.3 0.4 0.5", "v 0.4 0.5 0.6", "vt 0.999110 0.501077", "vt 0.999455 0.750380", "f 2/1 3/1 4/2", ] ) obj_file = StringIO(obj_file) expected_faces_textures_idx = torch.tensor([[0, 0, 1]], dtype=torch.int64) expected_textures = torch.tensor( [[0.999110, 0.501077], [0.999455, 0.750380]], dtype=torch.float32 ) expected_verts = torch.tensor( [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]], dtype=torch.float32, ) verts, faces, aux = load_obj(obj_file) normals = aux.normals textures = aux.verts_uvs materials = aux.material_colors tex_maps = aux.texture_images self.assertClose(faces.textures_idx, expected_faces_textures_idx) self.assertClose(expected_textures, textures) self.assertClose(expected_verts, verts) self.assertTrue( torch.all(faces.normals_idx == -(torch.ones_like(faces.textures_idx))) ) self.assertTrue(normals is None) self.assertTrue(materials is None) self.assertTrue(tex_maps is None) def test_load_obj_error_textures(self): obj_file = "\n".join(["vt 0.1"]) obj_file = StringIO(obj_file) with self.assertRaises(ValueError) as err: load_obj(obj_file) self.assertTrue("does not have 2 values" in str(err.exception)) def test_load_obj_error_normals(self): obj_file = "\n".join(["vn 0.1"]) obj_file = StringIO(obj_file) with self.assertRaises(ValueError) as err: load_obj(obj_file) self.assertTrue("does not have 3 values" in str(err.exception)) def test_load_obj_error_vertices(self): obj_file = "\n".join(["v 1"]) obj_file = StringIO(obj_file) with self.assertRaises(ValueError) as err: load_obj(obj_file) self.assertTrue("does not have 3 values" in str(err.exception)) def test_load_obj_error_inconsistent_triplets(self): obj_file = "\n".join(["f 2//1 3/1 4/1/2"]) obj_file = StringIO(obj_file) with self.assertRaises(ValueError) as err: load_obj(obj_file) self.assertTrue("Vertex properties are inconsistent" in str(err.exception)) def test_load_obj_error_too_many_vertex_properties(self): obj_file = "\n".join(["f 2/1/1/3"]) obj_file = StringIO(obj_file) with self.assertRaises(ValueError) as err: load_obj(obj_file) self.assertTrue("Face vertices can ony have 3 properties" in str(err.exception)) def test_load_obj_error_invalid_vertex_indices(self): obj_file = "\n".join( ["v 0.1 0.2 0.3", "v 0.1 0.2 0.3", "v 0.1 0.2 0.3", "f -2 5 1"] ) obj_file = StringIO(obj_file) with self.assertWarnsRegex(UserWarning, "Faces have invalid indices"): load_obj(obj_file) def test_load_obj_error_invalid_normal_indices(self): obj_file = "\n".join( [ "v 0.1 0.2 0.3", "v 0.1 0.2 0.3", "v 0.1 0.2 0.3", "vn 0.1 0.2 0.3", "vn 0.1 0.2 0.3", "vn 0.1 0.2 0.3", "f -2/2 2/4 1/1", ] ) obj_file = StringIO(obj_file) with self.assertWarnsRegex(UserWarning, "Faces have invalid indices"): load_obj(obj_file) def test_load_obj_error_invalid_texture_indices(self): obj_file = "\n".join( [ "v 0.1 0.2 0.3", "v 0.1 0.2 0.3", "v 0.1 0.2 0.3", "vt 0.1 0.2", "vt 0.1 0.2", "vt 0.1 0.2", "f -2//2 2//6 1//1", ] ) obj_file = StringIO(obj_file) with self.assertWarnsRegex(UserWarning, "Faces have invalid indices"): load_obj(obj_file) def test_save_obj_invalid_shapes(self): # Invalid vertices shape with self.assertRaises(ValueError) as error: verts = torch.FloatTensor([[0.1, 0.2, 0.3, 0.4]]) # (V, 4) faces = torch.LongTensor([[0, 1, 2]]) save_obj(StringIO(), verts, faces) expected_message = ( "Argument 'verts' should either be empty or of shape (num_verts, 3)." ) self.assertTrue(expected_message, error.exception) # Invalid faces shape with self.assertRaises(ValueError) as error: verts = torch.FloatTensor([[0.1, 0.2, 0.3]]) faces = torch.LongTensor([[0, 1, 2, 3]]) # (F, 4) save_obj(StringIO(), verts, faces) expected_message = ( "Argument 'faces' should either be empty or of shape (num_faces, 3)." ) self.assertTrue(expected_message, error.exception) def test_save_obj_invalid_indices(self): message_regex = "Faces have invalid indices" verts = torch.FloatTensor([[0.1, 0.2, 0.3]]) faces = torch.LongTensor([[0, 1, 2]]) with self.assertWarnsRegex(UserWarning, message_regex): save_obj(StringIO(), verts, faces) faces = torch.LongTensor([[-1, 0, 1]]) with self.assertWarnsRegex(UserWarning, message_regex): save_obj(StringIO(), verts, faces) def _test_save_load(self, verts, faces): f = StringIO() save_obj(f, verts, faces) f.seek(0) expected_verts, expected_faces = verts, faces if not len(expected_verts): # Always compare with a (V, 3) tensor expected_verts = torch.zeros(size=(0, 3), dtype=torch.float32) if not len(expected_faces): # Always compare with an (F, 3) tensor expected_faces = torch.zeros(size=(0, 3), dtype=torch.int64) actual_verts, actual_faces, _ = load_obj(f) self.assertClose(expected_verts, actual_verts) self.assertClose(expected_faces, actual_faces.verts_idx) def test_empty_save_load_obj(self): # Vertices + empty faces verts = torch.FloatTensor([[0.1, 0.2, 0.3]]) faces = torch.LongTensor([]) self._test_save_load(verts, faces) faces = torch.zeros(size=(0, 3), dtype=torch.int64) self._test_save_load(verts, faces) # Faces + empty vertices message_regex = "Faces have invalid indices" verts = torch.FloatTensor([]) faces = torch.LongTensor([[0, 1, 2]]) with self.assertWarnsRegex(UserWarning, message_regex): self._test_save_load(verts, faces) verts = torch.zeros(size=(0, 3), dtype=torch.float32) with self.assertWarnsRegex(UserWarning, message_regex): self._test_save_load(verts, faces) # Empty vertices + empty faces message_regex = "Empty 'verts' and 'faces' arguments provided" verts0 = torch.FloatTensor([]) faces0 = torch.LongTensor([]) with self.assertWarnsRegex(UserWarning, message_regex): self._test_save_load(verts0, faces0) faces3 = torch.zeros(size=(0, 3), dtype=torch.int64) with self.assertWarnsRegex(UserWarning, message_regex): self._test_save_load(verts0, faces3) verts3 = torch.zeros(size=(0, 3), dtype=torch.float32) with self.assertWarnsRegex(UserWarning, message_regex): self._test_save_load(verts3, faces0) with self.assertWarnsRegex(UserWarning, message_regex): self._test_save_load(verts3, faces3) def test_save_obj(self): verts = torch.tensor( [[0.01, 0.2, 0.301], [0.2, 0.03, 0.408], [0.3, 0.4, 0.05], [0.6, 0.7, 0.8]], dtype=torch.float32, ) faces = torch.tensor( [[0, 2, 1], [0, 1, 2], [3, 2, 1], [3, 1, 0]], dtype=torch.int64 ) obj_file = StringIO() save_obj(obj_file, verts, faces, decimal_places=2) expected_file = "\n".join( [ "v 0.01 0.20 0.30", "v 0.20 0.03 0.41", "v 0.30 0.40 0.05", "v 0.60 0.70 0.80", "f 1 3 2", "f 1 2 3", "f 4 3 2", "f 4 2 1", ] ) actual_file = obj_file.getvalue() self.assertEqual(actual_file, expected_file) def test_load_mtl(self): DATA_DIR = Path(__file__).resolve().parent.parent / "docs/tutorials/data" obj_filename = "cow_mesh/cow.obj" filename = os.path.join(DATA_DIR, obj_filename) verts, faces, aux = load_obj(filename) materials = aux.material_colors tex_maps = aux.texture_images dtype = torch.float32 expected_materials = { "material_1": { "ambient_color": torch.tensor([1.0, 1.0, 1.0], dtype=dtype), "diffuse_color": torch.tensor([1.0, 1.0, 1.0], dtype=dtype), "specular_color": torch.tensor([0.0, 0.0, 0.0], dtype=dtype), "shininess": torch.tensor([10.0], dtype=dtype), } } # Texture atlas is not created as `create_texture_atlas=True` was # not set in the load_obj args self.assertTrue(aux.texture_atlas is None) # Check that there is an image with material name material_1. self.assertTrue(tuple(tex_maps.keys()) == ("material_1",)) self.assertTrue(torch.is_tensor(tuple(tex_maps.values())[0])) self.assertTrue( torch.all(faces.materials_idx == torch.zeros(len(faces.verts_idx))) ) # Check all keys and values in dictionary are the same. for n1, n2 in zip(materials.keys(), expected_materials.keys()): self.assertTrue(n1 == n2) for k1, k2 in zip(materials[n1].keys(), expected_materials[n2].keys()): self.assertTrue( torch.allclose(materials[n1][k1], expected_materials[n2][k2]) ) def test_load_mtl_texture_atlas_compare_softras(self): # Load saved texture atlas created with SoftRas. device = torch.device("cuda:0") DATA_DIR = Path(__file__).resolve().parent.parent obj_filename = DATA_DIR / "docs/tutorials/data/cow_mesh/cow.obj" expected_atlas_fname = DATA_DIR / "tests/data/cow_texture_atlas_softras.pt" # Note, the reference texture atlas generated using SoftRas load_obj function # is too large to check in to the repo. Download the file to run the test locally. if not os.path.exists(expected_atlas_fname): url = "https://dl.fbaipublicfiles.com/pytorch3d/data/tests/cow_texture_atlas_softras.pt" msg = ( "cow_texture_atlas_softras.pt not found, download from %s, save it at the path %s, and rerun" % (url, expected_atlas_fname) ) warnings.warn(msg) return True expected_atlas = torch.load(expected_atlas_fname) _, _, aux = load_obj( obj_filename, load_textures=True, device=device, create_texture_atlas=True, texture_atlas_size=15, texture_wrap="repeat", ) self.assertClose(expected_atlas, aux.texture_atlas, atol=5e-5) def test_load_mtl_noload(self): DATA_DIR = Path(__file__).resolve().parent.parent / "docs/tutorials/data" obj_filename = "cow_mesh/cow.obj" filename = os.path.join(DATA_DIR, obj_filename) verts, faces, aux = load_obj(filename, load_textures=False) self.assertTrue(aux.material_colors is None) self.assertTrue(aux.texture_images is None) def test_load_mtl_fail(self): # Faces have a material obj_file = "\n".join( [ "v 0.1 0.2 0.3", "v 0.2 0.3 0.4", "v 0.3 0.4 0.5", "v 0.4 0.5 0.6", "usemtl material_1", "f 1 2 3", "f 1 2 4", ] ) obj_file = StringIO(obj_file) with self.assertWarnsRegex(UserWarning, "No mtl file provided"): verts, faces, aux = load_obj(obj_file) expected_verts = torch.tensor( [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]], dtype=torch.float32, ) expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64) self.assertTrue(torch.allclose(verts, expected_verts)) self.assertTrue(torch.allclose(faces.verts_idx, expected_faces)) self.assertTrue(aux.material_colors is None) self.assertTrue(aux.texture_images is None) self.assertTrue(aux.normals is None) self.assertTrue(aux.verts_uvs is None) def test_load_obj_missing_texture(self): DATA_DIR = Path(__file__).resolve().parent / "data" obj_filename = "missing_files_obj/model.obj" filename = os.path.join(DATA_DIR, obj_filename) with self.assertWarnsRegex(UserWarning, "Texture file does not exist"): verts, faces, aux = load_obj(filename) expected_verts = torch.tensor( [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]], dtype=torch.float32, ) expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64) self.assertTrue(torch.allclose(verts, expected_verts)) self.assertTrue(torch.allclose(faces.verts_idx, expected_faces)) def test_load_obj_missing_texture_noload(self): DATA_DIR = Path(__file__).resolve().parent / "data" obj_filename = "missing_files_obj/model.obj" filename = os.path.join(DATA_DIR, obj_filename) verts, faces, aux = load_obj(filename, load_textures=False) expected_verts = torch.tensor( [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]], dtype=torch.float32, ) expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64) self.assertTrue(torch.allclose(verts, expected_verts)) self.assertTrue(torch.allclose(faces.verts_idx, expected_faces)) self.assertTrue(aux.material_colors is None) self.assertTrue(aux.texture_images is None) def test_load_obj_missing_mtl(self): DATA_DIR = Path(__file__).resolve().parent / "data" obj_filename = "missing_files_obj/model2.obj" filename = os.path.join(DATA_DIR, obj_filename) with self.assertWarnsRegex(UserWarning, "Mtl file does not exist"): verts, faces, aux = load_obj(filename) expected_verts = torch.tensor( [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]], dtype=torch.float32, ) expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64) self.assertTrue(torch.allclose(verts, expected_verts)) self.assertTrue(torch.allclose(faces.verts_idx, expected_faces)) def test_load_obj_missing_mtl_noload(self): DATA_DIR = Path(__file__).resolve().parent / "data" obj_filename = "missing_files_obj/model2.obj" filename = os.path.join(DATA_DIR, obj_filename) verts, faces, aux = load_obj(filename, load_textures=False) expected_verts = torch.tensor( [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]], dtype=torch.float32, ) expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64) self.assertTrue(torch.allclose(verts, expected_verts)) self.assertTrue(torch.allclose(faces.verts_idx, expected_faces)) self.assertTrue(aux.material_colors is None) self.assertTrue(aux.texture_images is None) def test_join_meshes_as_batch(self): """ Test that join_meshes_as_batch and load_objs_as_meshes are consistent with single meshes. """ def check_triple(mesh, mesh3): """ Verify that mesh3 is three copies of mesh. """ def check_item(x, y): self.assertEqual(x is None, y is None) if x is not None: self.assertClose(torch.cat([x, x, x]), y) check_item(mesh.verts_padded(), mesh3.verts_padded()) check_item(mesh.faces_padded(), mesh3.faces_padded()) if mesh.textures is not None: check_item(mesh.textures.maps_padded(), mesh3.textures.maps_padded()) check_item( mesh.textures.faces_uvs_padded(), mesh3.textures.faces_uvs_padded() ) check_item( mesh.textures.verts_uvs_padded(), mesh3.textures.verts_uvs_padded() ) check_item( mesh.textures.verts_rgb_padded(), mesh3.textures.verts_rgb_padded() ) DATA_DIR = Path(__file__).resolve().parent.parent / "docs/tutorials/data" obj_filename = DATA_DIR / "cow_mesh/cow.obj" mesh = load_objs_as_meshes([obj_filename]) mesh3 = load_objs_as_meshes([obj_filename, obj_filename, obj_filename]) check_triple(mesh, mesh3) self.assertTupleEqual(mesh.textures.maps_padded().shape, (1, 1024, 1024, 3)) # Try mismatched texture map sizes, which needs a call to interpolate() mesh2048 = mesh.clone() maps = mesh.textures.maps_padded() mesh2048.textures._maps_padded = torch.cat([maps, maps], dim=1) join_meshes_as_batch([mesh.to("cuda:0"), mesh2048.to("cuda:0")]) mesh_notex = load_objs_as_meshes([obj_filename], load_textures=False) mesh3_notex = load_objs_as_meshes( [obj_filename, obj_filename, obj_filename], load_textures=False ) check_triple(mesh_notex, mesh3_notex) self.assertIsNone(mesh_notex.textures) verts = torch.randn((4, 3), dtype=torch.float32) faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64) vert_tex = torch.tensor( [[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]], dtype=torch.float32 ) tex = Textures(verts_rgb=vert_tex[None, :]) mesh_rgb = Meshes(verts=[verts], faces=[faces], textures=tex) mesh_rgb3 = join_meshes_as_batch([mesh_rgb, mesh_rgb, mesh_rgb]) check_triple(mesh_rgb, mesh_rgb3) teapot_obj = DATA_DIR / "teapot.obj" mesh_teapot = load_objs_as_meshes([teapot_obj]) teapot_verts, teapot_faces = mesh_teapot.get_mesh_verts_faces(0) mix_mesh = load_objs_as_meshes([obj_filename, teapot_obj], load_textures=False) self.assertEqual(len(mix_mesh), 2) self.assertClose(mix_mesh.verts_list()[0], mesh.verts_list()[0]) self.assertClose(mix_mesh.faces_list()[0], mesh.faces_list()[0]) self.assertClose(mix_mesh.verts_list()[1], teapot_verts) self.assertClose(mix_mesh.faces_list()[1], teapot_faces) cow3_tea = join_meshes_as_batch([mesh3, mesh_teapot], include_textures=False) self.assertEqual(len(cow3_tea), 4) check_triple(mesh_notex, cow3_tea[:3]) self.assertClose(cow3_tea.verts_list()[3], mesh_teapot.verts_list()[0]) self.assertClose(cow3_tea.faces_list()[3], mesh_teapot.faces_list()[0]) def test_join_meshes(self): """ Test that join_mesh joins single meshes and the corresponding values are consistent with the single meshes. """ # Load cow mesh. DATA_DIR = Path(__file__).resolve().parent.parent / "docs/tutorials/data" cow_obj = DATA_DIR / "cow_mesh/cow.obj" cow_mesh = load_objs_as_meshes([cow_obj]) cow_verts, cow_faces = cow_mesh.get_mesh_verts_faces(0) # Join a batch of three single meshes and check that the values are consistent # with the individual meshes. cow_mesh3 = join_mesh([cow_mesh, cow_mesh, cow_mesh]) def check_item(x, y, offset): self.assertClose(torch.cat([x, x + offset, x + 2 * offset], dim=1), y) check_item(cow_mesh.verts_padded(), cow_mesh3.verts_padded(), 0) check_item(cow_mesh.faces_padded(), cow_mesh3.faces_padded(), cow_mesh._V) # Test the joining of meshes of different sizes. teapot_obj = DATA_DIR / "teapot.obj" teapot_mesh = load_objs_as_meshes([teapot_obj]) teapot_verts, teapot_faces = teapot_mesh.get_mesh_verts_faces(0) mix_mesh = join_mesh([cow_mesh, teapot_mesh]) mix_verts, mix_faces = mix_mesh.get_mesh_verts_faces(0) self.assertEqual(len(mix_mesh), 1) self.assertClose(mix_verts[: cow_mesh._V], cow_verts) self.assertClose(mix_faces[: cow_mesh._F], cow_faces) self.assertClose(mix_verts[cow_mesh._V :], teapot_verts) self.assertClose(mix_faces[cow_mesh._F :], teapot_faces + cow_mesh._V) @staticmethod def _bm_save_obj(verts: torch.Tensor, faces: torch.Tensor, decimal_places: int): return lambda: save_obj(StringIO(), verts, faces, decimal_places) @staticmethod def _bm_load_obj(verts: torch.Tensor, faces: torch.Tensor, decimal_places: int): f = StringIO() save_obj(f, verts, faces, decimal_places) s = f.getvalue() # Recreate stream so it's unaffected by how it was created. return lambda: load_obj(StringIO(s)) @staticmethod def bm_save_simple_obj_with_init(V: int, F: int): verts = torch.tensor(V * [[0.11, 0.22, 0.33]]).view(-1, 3) faces = torch.tensor(F * [[1, 2, 3]]).view(-1, 3) return TestMeshObjIO._bm_save_obj(verts, faces, decimal_places=2) @staticmethod def bm_load_simple_obj_with_init(V: int, F: int): verts = torch.tensor(V * [[0.1, 0.2, 0.3]]).view(-1, 3) faces = torch.tensor(F * [[1, 2, 3]]).view(-1, 3) return TestMeshObjIO._bm_load_obj(verts, faces, decimal_places=2) @staticmethod def bm_save_complex_obj(N: int): meshes = torus(r=0.25, R=1.0, sides=N, rings=2 * N) [verts], [faces] = meshes.verts_list(), meshes.faces_list() return TestMeshObjIO._bm_save_obj(verts, faces, decimal_places=5) @staticmethod def bm_load_complex_obj(N: int): meshes = torus(r=0.25, R=1.0, sides=N, rings=2 * N) [verts], [faces] = meshes.verts_list(), meshes.faces_list() return TestMeshObjIO._bm_load_obj(verts, faces, decimal_places=5) @staticmethod def bm_load_texture_atlas(R: int): device = torch.device("cuda:0") torch.cuda.set_device(device) DATA_DIR = "/data/users/nikhilar/fbsource/fbcode/vision/fair/pytorch3d/docs/" obj_filename = os.path.join(DATA_DIR, "tutorials/data/cow_mesh/cow.obj") torch.cuda.synchronize() def load(): load_obj( obj_filename, load_textures=True, device=device, create_texture_atlas=True, texture_atlas_size=R, ) torch.cuda.synchronize() return load @staticmethod def bm_bilinear_sampling_vectorized(S: int, F: int, R: int): device = torch.device("cuda:0") torch.cuda.set_device(device) image = torch.rand((S, S, 3)) grid = torch.rand((F, R, R, 2)) torch.cuda.synchronize() def load(): _bilinear_interpolation_vectorized(image, grid) torch.cuda.synchronize() return load @staticmethod def bm_bilinear_sampling_grid_sample(S: int, F: int, R: int): device = torch.device("cuda:0") torch.cuda.set_device(device) image = torch.rand((S, S, 3)) grid = torch.rand((F, R, R, 2)) torch.cuda.synchronize() def load(): _bilinear_interpolation_grid_sample(image, grid) torch.cuda.synchronize() return load