#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. """ Script to visualize a previously trained model. Example call: pytorch3d_implicitron_visualizer \ exp_dir='./exps/checkpoint_dir' visdom_show_preds=True visdom_port=8097 \ n_eval_cameras=40 render_size="[64,64]" video_size="[256,256]" """ import os import sys from typing import Optional, Tuple import numpy as np import torch from omegaconf import DictConfig, OmegaConf from pytorch3d.implicitron.models.visualization.render_flyaround import render_flyaround from pytorch3d.implicitron.tools.config import enable_get_default_args, get_default_args from .experiment import Experiment def visualize_reconstruction( exp_dir: str = "", restrict_sequence_name: Optional[str] = None, output_directory: Optional[str] = None, render_size: Tuple[int, int] = (512, 512), video_size: Optional[Tuple[int, int]] = None, split: str = "train", n_source_views: int = 9, n_eval_cameras: int = 40, visdom_show_preds: bool = False, visdom_server: str = "http://127.0.0.1", visdom_port: int = 8097, visdom_env: Optional[str] = None, ) -> None: """ Given an `exp_dir` containing a trained Implicitron model, generates videos consisting of renderes of sequences from the dataset used to train and evaluate the trained Implicitron model. Args: exp_dir: Implicitron experiment directory. restrict_sequence_name: If set, defines the list of sequences to visualize. output_directory: If set, defines a custom directory to output visualizations to. render_size: The size (HxW) of the generated renders. video_size: The size (HxW) of the output video. split: The dataset split to use for visualization. Can be "train" / "val" / "test". n_source_views: The number of source views added to each rendered batch. These views are required inputs for models such as NeRFormer / NeRF-WCE. n_eval_cameras: The number of cameras each fly-around trajectory. visdom_show_preds: If `True`, outputs visualizations to visdom. visdom_server: The address of the visdom server. visdom_port: The port of the visdom server. visdom_env: If set, defines a custom name for the visdom environment. """ # In case an output directory is specified use it. If no output_directory # is specified create a vis folder inside the experiment directory if output_directory is None: output_directory = os.path.join(exp_dir, "vis") os.makedirs(output_directory, exist_ok=True) # Set the random seeds torch.manual_seed(0) np.random.seed(0) # Get the config from the experiment_directory, # and overwrite relevant fields config = _get_config_from_experiment_directory(exp_dir) config.exp_dir = exp_dir # important so that the CO3D dataset gets loaded in full data_source_args = config.data_source_ImplicitronDataSource_args if "dataset_map_provider_JsonIndexDatasetMapProvider_args" in data_source_args: dataset_args = ( data_source_args.dataset_map_provider_JsonIndexDatasetMapProvider_args ) dataset_args.test_on_train = False if restrict_sequence_name is not None: dataset_args.restrict_sequence_name = restrict_sequence_name # Set the rendering image size model_factory_args = config.model_factory_ImplicitronModelFactory_args model_factory_args.force_resume = True model_args = model_factory_args.model_GenericModel_args model_args.render_image_width = render_size[0] model_args.render_image_height = render_size[1] # Load the previously trained model experiment = Experiment(**config) model = experiment.model_factory(exp_dir=exp_dir) device = torch.device("cuda") model.to(device) model.eval() # Setup the dataset data_source = experiment.data_source dataset_map, _ = data_source.get_datasets_and_dataloaders() dataset = dataset_map[split] if dataset is None: raise ValueError(f"{split} dataset not provided") if visdom_env is None: visdom_env = ( "visualizer_" + config.training_loop_ImplicitronTrainingLoop_args.visdom_env ) # iterate over the sequences in the dataset for sequence_name in dataset.sequence_names(): with torch.no_grad(): render_flyaround( dataset=dataset, sequence_name=sequence_name, model=model, output_video_path=os.path.join(output_directory, "video"), n_source_views=n_source_views, visdom_show_preds=visdom_show_preds, n_flyaround_poses=n_eval_cameras, visdom_server=visdom_server, visdom_port=visdom_port, visdom_environment=visdom_env, video_resize=video_size, device=device, ) enable_get_default_args(visualize_reconstruction) def _get_config_from_experiment_directory(experiment_directory) -> DictConfig: cfg_file = os.path.join(experiment_directory, "expconfig.yaml") config = OmegaConf.load(cfg_file) # pyre-ignore[7] return config def main(argv) -> None: # automatically parses arguments of visualize_reconstruction cfg = OmegaConf.create(get_default_args(visualize_reconstruction)) cfg.update(OmegaConf.from_cli(argv)) with torch.no_grad(): visualize_reconstruction(**cfg) if __name__ == "__main__": main(sys.argv)