# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. from itertools import product import torch from fvcore.common.benchmark import benchmark from test_chamfer import TestChamfer def bm_chamfer() -> None: kwargs_list_naive = [ {"batch_size": 1, "P1": 32, "P2": 64, "return_normals": False}, {"batch_size": 1, "P1": 32, "P2": 64, "return_normals": True}, {"batch_size": 32, "P1": 32, "P2": 64, "return_normals": False}, ] benchmark( TestChamfer.chamfer_naive_with_init, "CHAMFER_NAIVE", kwargs_list_naive, warmup_iters=1, ) if torch.cuda.is_available(): kwargs_list = [] batch_size = [1, 32] P1 = [32, 1000, 10000] P2 = [64, 3000, 30000] return_normals = [True, False] homogeneous = [True, False] test_cases = product(batch_size, P1, P2, return_normals, homogeneous) for case in test_cases: b, p1, p2, n, h = case kwargs_list.append( { "batch_size": b, "P1": p1, "P2": p2, "return_normals": n, "homogeneous": h, } ) benchmark(TestChamfer.chamfer_with_init, "CHAMFER", kwargs_list, warmup_iters=1)