# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. from itertools import product import torch from fvcore.common.benchmark import benchmark from test_meshes import TestMeshes def bm_compute_packed_padded_meshes() -> None: devices = ["cpu"] if torch.cuda.is_available(): devices.append("cuda") kwargs_list = [] num_meshes = [32, 128] max_v = [100, 1000, 10000] max_f = [300, 3000, 30000] test_cases = product(num_meshes, max_v, max_f, devices) for case in test_cases: n, v, f, d = case kwargs_list.append({"num_meshes": n, "max_v": v, "max_f": f, "device": d}) benchmark( TestMeshes.compute_packed_with_init, "COMPUTE_PACKED", kwargs_list, warmup_iters=1, ) benchmark( TestMeshes.compute_padded_with_init, "COMPUTE_PADDED", kwargs_list, warmup_iters=1, ) if __name__ == "__main__": bm_compute_packed_padded_meshes()