# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. """Test the sorting of the closest spheres.""" import logging import os import sys import unittest from os import path import imageio import numpy as np import torch # fmt: off # Make the mixin available. sys.path.insert(0, path.join(path.dirname(__file__), "..")) from common_testing import TestCaseMixin # isort:skip # noqa: E402 # fmt: on # Making sure you can run this, even if pulsar hasn't been installed yet. sys.path.insert(0, path.join(path.dirname(__file__), "..", "..")) devices = [torch.device("cuda"), torch.device("cpu")] IN_REF_FP = path.join(path.dirname(__file__), "reference", "nr0000-in.pth") OUT_REF_FP = path.join(path.dirname(__file__), "reference", "nr0000-out.pth") class TestDepth(TestCaseMixin, unittest.TestCase): """Test different numbers of channels.""" def test_basic(self): from pytorch3d.renderer.points.pulsar import Renderer for device in devices: gamma = 1e-5 max_depth = 15.0 min_depth = 5.0 renderer = Renderer( 256, 256, 10000, orthogonal_projection=True, right_handed_system=False, n_channels=1, ).to(device) data = torch.load(IN_REF_FP, map_location="cpu") # data["pos"] = torch.rand_like(data["pos"]) # data["pos"][:, 0] = data["pos"][:, 0] * 2. - 1. # data["pos"][:, 1] = data["pos"][:, 1] * 2. - 1. # data["pos"][:, 2] = data["pos"][:, 2] + 9.5 result, result_info = renderer.forward( data["pos"].to(device), data["col"].to(device), data["rad"].to(device), data["cam_params"].to(device), gamma, min_depth=min_depth, max_depth=max_depth, return_forward_info=True, bg_col=torch.zeros(1, device=device, dtype=torch.float32), percent_allowed_difference=0.01, ) sphere_ids = Renderer.sphere_ids_from_result_info_nograd(result_info) depth_map = Renderer.depth_map_from_result_info_nograd(result_info) depth_vis = (depth_map - depth_map[depth_map > 0].min()) * 200 / ( depth_map.max() - depth_map[depth_map > 0.0].min() ) + 50 if not os.environ.get("FB_TEST", False): imageio.imwrite( path.join( path.dirname(__file__), "test_out", "test_depth_test_basic_depth.png", ), depth_vis.cpu().numpy().astype(np.uint8), ) # torch.save( # data, path.join(path.dirname(__file__), "reference", "nr0000-in.pth") # ) # torch.save( # {"sphere_ids": sphere_ids, "depth_map": depth_map}, # path.join(path.dirname(__file__), "reference", "nr0000-out.pth"), # ) # sys.exit(0) reference = torch.load(OUT_REF_FP, map_location="cpu") self.assertTrue( torch.sum( reference["sphere_ids"][..., 0].to(device) == sphere_ids[..., 0] ) > 65530 ) self.assertClose(reference["depth_map"].to(device), depth_map) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) unittest.main()