# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from pytorch3d.structures import utils as struct_utils from .common_testing import TestCaseMixin class TestStructUtils(TestCaseMixin, unittest.TestCase): def setUp(self) -> None: super().setUp() torch.manual_seed(43) def _check_list_to_padded_slices(self, x, x_padded, ndim): N = len(x) for i in range(N): slices = [i] for dim in range(ndim): if x[i].nelement() == 0 and x[i].ndim == 1: slice_ = slice(0, 0, 1) else: slice_ = slice(0, x[i].shape[dim], 1) slices.append(slice_) if x[i].nelement() == 0 and x[i].ndim == 1: x_correct = x[i].new_zeros(*[[0] * ndim]) else: x_correct = x[i] self.assertClose(x_padded[slices], x_correct) def test_list_to_padded(self): device = torch.device("cuda:0") N = 5 K = 20 for ndim in [1, 2, 3, 4]: x = [] for _ in range(N): dims = torch.randint(K, size=(ndim,)).tolist() x.append(torch.rand(dims, device=device)) # set 0th element to an empty 1D tensor x[0] = torch.tensor([], dtype=x[0].dtype, device=device) # set 1st element to an empty tensor with correct number of dims x[1] = x[1].new_zeros(*[[0] * ndim]) pad_size = [K] * ndim x_padded = struct_utils.list_to_padded( x, pad_size=pad_size, pad_value=0.0, equisized=False ) for dim in range(ndim): self.assertEqual(x_padded.shape[dim + 1], K) self._check_list_to_padded_slices(x, x_padded, ndim) # check for no pad size (defaults to max dimension) x_padded = struct_utils.list_to_padded(x, pad_value=0.0, equisized=False) max_sizes = ( max( (0 if (y.nelement() == 0 and y.ndim == 1) else y.shape[dim]) for y in x ) for dim in range(ndim) ) for dim, max_size in enumerate(max_sizes): self.assertEqual(x_padded.shape[dim + 1], max_size) self._check_list_to_padded_slices(x, x_padded, ndim) # check for equisized x = [torch.rand((K, *([10] * (ndim - 1))), device=device) for _ in range(N)] x_padded = struct_utils.list_to_padded(x, equisized=True) self.assertClose(x_padded, torch.stack(x, 0)) # catch ValueError for invalid dimensions pad_size = [K] * (ndim + 1) with self.assertRaisesRegex(ValueError, "Pad size must"): struct_utils.list_to_padded( x, pad_size=pad_size, pad_value=0.0, equisized=False ) # invalid input tensor dimensions x = [] ndim = 3 for _ in range(N): dims = torch.randint(K, size=(ndim,)).tolist() x.append(torch.rand(dims, device=device)) pad_size = [K] * 2 with self.assertRaisesRegex(ValueError, "Pad size must"): x_padded = struct_utils.list_to_padded( x, pad_size=pad_size, pad_value=0.0, equisized=False ) def test_padded_to_list(self): device = torch.device("cuda:0") N = 5 K = 20 ndim = 2 for ndim in (2, 3, 4): dims = [K] * ndim x = torch.rand([N] + dims, device=device) x_list = struct_utils.padded_to_list(x) for i in range(N): self.assertClose(x_list[i], x[i]) split_size = torch.randint(1, K, size=(N, ndim)).unbind(0) x_list = struct_utils.padded_to_list(x, split_size) for i in range(N): slices = [i] for dim in range(ndim): slices.append(slice(0, split_size[i][dim], 1)) self.assertClose(x_list[i], x[slices]) # split size is a list of ints split_size = [int(z) for z in torch.randint(1, K, size=(N,)).unbind(0)] x_list = struct_utils.padded_to_list(x, split_size) for i in range(N): self.assertClose(x_list[i], x[i][: split_size[i]]) def test_padded_to_packed(self): device = torch.device("cuda:0") N = 5 K = 20 ndim = 2 dims = [K] * ndim x = torch.rand([N] + dims, device=device) # Case 1: no split_size or pad_value provided # Check output is just the flattened input. x_packed = struct_utils.padded_to_packed(x) self.assertTrue(x_packed.shape == (x.shape[0] * x.shape[1], x.shape[2])) self.assertClose(x_packed, x.reshape(-1, K)) # Case 2: pad_value is provided. # Check each section of the packed tensor matches the # corresponding unpadded elements of the padded tensor. # Check that only rows where all the values are padded # are removed in the conversion to packed. pad_value = -1 x_list = [] split_size = [] for _ in range(N): dim = torch.randint(K, size=(1,)).item() # Add some random values in the input which are the same as the pad_value. # These should not be filtered out. x_list.append( torch.randint(low=pad_value, high=10, size=(dim, K), device=device) ) split_size.append(dim) x_padded = struct_utils.list_to_padded(x_list, pad_value=pad_value) x_packed = struct_utils.padded_to_packed(x_padded, pad_value=pad_value) curr = 0 for i in range(N): self.assertClose(x_packed[curr : curr + split_size[i], ...], x_list[i]) self.assertClose(torch.cat(x_list), x_packed) curr += split_size[i] # Case 3: split_size is provided. # Check each section of the packed tensor matches the corresponding # unpadded elements. x_packed = struct_utils.padded_to_packed(x_padded, split_size=split_size) curr = 0 for i in range(N): self.assertClose(x_packed[curr : curr + split_size[i], ...], x_list[i]) self.assertClose(torch.cat(x_list), x_packed) curr += split_size[i] # Case 4: split_size of the wrong shape is provided. # Raise an error. split_size = torch.randint(1, K, size=(2 * N,)).view(N, 2).unbind(0) with self.assertRaisesRegex(ValueError, "1-dimensional"): x_packed = struct_utils.padded_to_packed(x_padded, split_size=split_size) split_size = torch.randint(1, K, size=(2 * N,)).view(N * 2).tolist() with self.assertRaisesRegex( ValueError, "same length as inputs first dimension" ): x_packed = struct_utils.padded_to_packed(x_padded, split_size=split_size) # Case 5: both pad_value and split_size are provided. # Raise an error. with self.assertRaisesRegex(ValueError, "Only one of"): x_packed = struct_utils.padded_to_packed( x_padded, split_size=split_size, pad_value=-1 ) # Case 6: Input has more than 3 dims. # Raise an error. x = torch.rand((N, K, K, K, K), device=device) split_size = torch.randint(1, K, size=(N,)).tolist() with self.assertRaisesRegex(ValueError, "Supports only"): struct_utils.padded_to_packed(x, split_size=split_size) def test_list_to_packed(self): device = torch.device("cuda:0") N = 5 K = 20 x, x_dims = [], [] dim2 = torch.randint(K, size=(1,)).item() for _ in range(N): dim1 = torch.randint(K, size=(1,)).item() x_dims.append(dim1) x.append(torch.rand([dim1, dim2], device=device)) out = struct_utils.list_to_packed(x) x_packed = out[0] num_items = out[1] item_packed_first_idx = out[2] item_packed_to_list_idx = out[3] cur = 0 for i in range(N): self.assertTrue(num_items[i] == x_dims[i]) self.assertTrue(item_packed_first_idx[i] == cur) self.assertTrue(item_packed_to_list_idx[cur : cur + x_dims[i]].eq(i).all()) self.assertClose(x_packed[cur : cur + x_dims[i]], x[i]) cur += x_dims[i]