# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import os import unittest from pytorch3d.implicitron.dataset.blender_dataset_map_provider import ( BlenderDatasetMapProvider, ) from pytorch3d.implicitron.dataset.dataset_base import FrameData from pytorch3d.implicitron.dataset.llff_dataset_map_provider import ( LlffDatasetMapProvider, ) from pytorch3d.implicitron.tools.config import expand_args_fields from tests.common_testing import TestCaseMixin # These tests are only run internally, where the data is available. internal = os.environ.get("FB_TEST", False) inside_re_worker = os.environ.get("INSIDE_RE_WORKER", False) skip_tests = not internal or inside_re_worker @unittest.skipIf(skip_tests, "no data") class TestDataLlff(TestCaseMixin, unittest.TestCase): def test_synthetic(self): expand_args_fields(BlenderDatasetMapProvider) provider = BlenderDatasetMapProvider( base_dir="manifold://co3d/tree/nerf_data/nerf_synthetic/lego", object_name="lego", ) dataset_map = provider.get_dataset_map() for name, length in [("train", 100), ("val", 100), ("test", 200)]: dataset = getattr(dataset_map, name) self.assertEqual(len(dataset), length) # try getting a value value = dataset[0] self.assertIsInstance(value, FrameData) def test_llff(self): expand_args_fields(LlffDatasetMapProvider) provider = LlffDatasetMapProvider( base_dir="manifold://co3d/tree/nerf_data/nerf_llff_data/fern", object_name="fern", ) dataset_map = provider.get_dataset_map() for name, length, frame_type in [ ("train", 17, "known"), ("test", 3, "unseen"), ("val", 3, "unseen"), ]: dataset = getattr(dataset_map, name) self.assertEqual(len(dataset), length) # try getting a value value = dataset[0] self.assertIsInstance(value, FrameData) self.assertEqual(value.frame_type, frame_type) self.assertEqual(len(dataset_map.test.get_eval_batches()), 3) for batch in dataset_map.test.get_eval_batches(): self.assertEqual(len(batch), 1) self.assertEqual(dataset_map.test[batch[0]].frame_type, "unseen") def test_include_known_frames(self): expand_args_fields(LlffDatasetMapProvider) provider = LlffDatasetMapProvider( base_dir="manifold://co3d/tree/nerf_data/nerf_llff_data/fern", object_name="fern", n_known_frames_for_test=2, ) dataset_map = provider.get_dataset_map() for name, types in [ ("train", ["known"] * 17), ("val", ["unseen"] * 3 + ["known"] * 17), ("test", ["unseen"] * 3 + ["known"] * 17), ]: dataset = getattr(dataset_map, name) self.assertEqual(len(dataset), len(types)) for i, frame_type in enumerate(types): value = dataset[i] self.assertEqual(value.frame_type, frame_type) self.assertEqual(len(dataset_map.test.get_eval_batches()), 3) for batch in dataset_map.test.get_eval_batches(): self.assertEqual(len(batch), 3) self.assertEqual(dataset_map.test[batch[0]].frame_type, "unseen") for i in batch[1:]: self.assertEqual(dataset_map.test[i].frame_type, "known")