#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. from itertools import product import torch from fvcore.common.benchmark import benchmark from test_nearest_neighbor_points import TestNearestNeighborPoints def bm_nn_points() -> None: kwargs_list = [] N = [1, 4, 32] D = [3, 4] P1 = [1, 128] P2 = [32, 128] test_cases = product(N, D, P1, P2) for case in test_cases: n, d, p1, p2 = case kwargs_list.append({"N": n, "D": d, "P1": p1, "P2": p2}) benchmark( TestNearestNeighborPoints.bm_nn_points_python_with_init, "NN_PYTHON", kwargs_list, warmup_iters=1, ) if torch.cuda.is_available(): benchmark( TestNearestNeighborPoints.bm_nn_points_cuda_with_init, "NN_CUDA", kwargs_list, warmup_iters=1, )