# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import torch from fvcore.common.benchmark import benchmark from test_chamfer import TestChamfer def bm_chamfer() -> None: kwargs_list_naive = [ {"batch_size": 1, "P1": 32, "P2": 64, "return_normals": False}, {"batch_size": 1, "P1": 32, "P2": 64, "return_normals": True}, {"batch_size": 32, "P1": 32, "P2": 64, "return_normals": False}, ] benchmark( TestChamfer.chamfer_naive_with_init, "CHAMFER_NAIVE", kwargs_list_naive, warmup_iters=1, ) if torch.cuda.is_available(): kwargs_list = kwargs_list_naive + [ {"batch_size": 1, "P1": 1000, "P2": 3000, "return_normals": False}, {"batch_size": 1, "P1": 1000, "P2": 30000, "return_normals": True}, ] benchmark( TestChamfer.chamfer_with_init, "CHAMFER", kwargs_list, warmup_iters=1, )