#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. """ This example demonstrates the most trivial use of the pulsar PyTorch3D interface for sphere renderering. It renders and saves an image with 10 random spheres. Output: basic-pt3d.png. """ from os import path import imageio import torch from pytorch3d.renderer import PerspectiveCameras # , look_at_view_transform from pytorch3d.renderer import ( PointsRasterizationSettings, PointsRasterizer, PulsarPointsRenderer, ) from pytorch3d.structures import Pointclouds torch.manual_seed(1) n_points = 10 width = 1_000 height = 1_000 device = torch.device("cuda") # Generate sample data. vert_pos = torch.rand(n_points, 3, dtype=torch.float32, device=device) * 10.0 vert_pos[:, 2] += 25.0 vert_pos[:, :2] -= 5.0 vert_col = torch.rand(n_points, 3, dtype=torch.float32, device=device) pcl = Pointclouds(points=vert_pos[None, ...], features=vert_col[None, ...]) # Alternatively, you can also use the look_at_view_transform to get R and T: # R, T = look_at_view_transform( # dist=30.0, elev=0.0, azim=180.0, at=((0.0, 0.0, 30.0),), up=((0, 1, 0),), # ) cameras = PerspectiveCameras( # The focal length must be double the size for PyTorch3D because of the NDC # coordinates spanning a range of two - and they must be normalized by the # sensor width (see the pulsar example). This means we need here # 5.0 * 2.0 / 2.0 to get the equivalent results as in pulsar. focal_length=(5.0 * 2.0 / 2.0,), R=torch.eye(3, dtype=torch.float32, device=device)[None, ...], T=torch.zeros((1, 3), dtype=torch.float32, device=device), image_size=((width, height),), device=device, ) vert_rad = torch.rand(n_points, dtype=torch.float32, device=device) raster_settings = PointsRasterizationSettings( image_size=(width, height), radius=vert_rad, ) rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings) renderer = PulsarPointsRenderer(rasterizer=rasterizer).to(device) # Render. image = renderer( pcl, gamma=(1.0e-1,), # Renderer blending parameter gamma, in [1., 1e-5]. znear=(1.0,), zfar=(45.0,), radius_world=True, bg_col=torch.ones((3,), dtype=torch.float32, device=device), )[0] print("Writing image to `%s`." % (path.abspath("basic-pt3d.png"))) imageio.imsave("basic-pt3d.png", (image.cpu().detach() * 255.0).to(torch.uint8).numpy())