# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import unittest import numpy as np import torch from pytorch3d.transforms.rotation_conversions import random_rotations from pytorch3d.transforms.se3 import se3_exp_map, se3_log_map from pytorch3d.transforms.so3 import so3_exp_map, so3_log_map, so3_rotation_angle from .common_testing import TestCaseMixin class TestSE3(TestCaseMixin, unittest.TestCase): precomputed_log_transform = torch.tensor( [ [0.1900, 2.1600, -0.1700, 0.8500, -1.9200, 0.6500], [-0.6500, -0.8200, 0.5300, -1.2800, -1.6600, -0.3000], [-0.0900, 0.2000, -1.1200, 1.8600, -0.7100, 0.6900], [0.8000, -0.0300, 1.4900, -0.5200, -0.2500, 1.4700], [-0.3300, -1.1600, 2.3600, -0.6900, 0.1800, -1.1800], [-1.8000, -1.5800, 0.8400, 1.4200, 0.6500, 0.4300], [-1.5900, 0.6200, 1.6900, -0.6600, 0.9400, 0.0800], [0.0800, -0.1400, 0.3300, -0.5900, -1.0700, 0.1000], [-0.3300, -0.5300, -0.8800, 0.3900, 0.1600, -0.2000], [1.0100, -1.3500, -0.3500, -0.6400, 0.4500, -0.5400], ], dtype=torch.float32, ) precomputed_transform = torch.tensor( [ [ [-0.3496, -0.2966, 0.8887, 0.0000], [-0.7755, 0.6239, -0.0968, 0.0000], [-0.5258, -0.7230, -0.4481, 0.0000], [-0.7392, 1.9119, 0.3122, 1.0000], ], [ [0.0354, 0.5992, 0.7998, 0.0000], [0.8413, 0.4141, -0.3475, 0.0000], [-0.5395, 0.6852, -0.4894, 0.0000], [-0.9902, -0.4840, 0.1226, 1.0000], ], [ [0.6664, -0.1679, 0.7264, 0.0000], [-0.7309, -0.3394, 0.5921, 0.0000], [0.1471, -0.9255, -0.3489, 0.0000], [-0.0815, 0.8719, -0.4516, 1.0000], ], [ [0.1010, 0.9834, -0.1508, 0.0000], [-0.8783, 0.0169, -0.4779, 0.0000], [-0.4674, 0.1807, 0.8654, 0.0000], [0.2375, 0.7043, 1.4159, 1.0000], ], [ [0.3935, -0.8930, 0.2184, 0.0000], [0.7873, 0.2047, -0.5817, 0.0000], [0.4747, 0.4009, 0.7836, 0.0000], [-0.3476, -0.0424, 2.5408, 1.0000], ], [ [0.7572, 0.6342, -0.1567, 0.0000], [0.1039, 0.1199, 0.9873, 0.0000], [0.6449, -0.7638, 0.0249, 0.0000], [-1.2885, -2.0666, -0.1137, 1.0000], ], [ [0.6020, -0.2140, -0.7693, 0.0000], [-0.3409, 0.8024, -0.4899, 0.0000], [0.7221, 0.5572, 0.4101, 0.0000], [-0.7550, 1.1928, 1.8480, 1.0000], ], [ [0.4913, 0.3548, 0.7954, 0.0000], [0.2013, 0.8423, -0.5000, 0.0000], [-0.8474, 0.4058, 0.3424, 0.0000], [-0.1003, -0.0406, 0.3295, 1.0000], ], [ [0.9678, -0.1622, -0.1926, 0.0000], [0.2235, 0.9057, 0.3603, 0.0000], [0.1160, -0.3917, 0.9128, 0.0000], [-0.4417, -0.3111, -0.9227, 1.0000], ], [ [0.7710, -0.5957, -0.2250, 0.0000], [0.3288, 0.6750, -0.6605, 0.0000], [0.5454, 0.4352, 0.7163, 0.0000], [0.5623, -1.5886, -0.0182, 1.0000], ], ], dtype=torch.float32, ) def setUp(self) -> None: super().setUp() torch.manual_seed(42) np.random.seed(42) @staticmethod def init_log_transform(batch_size: int = 10): """ Initialize a list of `batch_size` 6-dimensional vectors representing randomly generated logarithms of SE(3) transforms. """ device = torch.device("cuda:0") log_rot = torch.randn((batch_size, 6), dtype=torch.float32, device=device) return log_rot @staticmethod def init_transform(batch_size: int = 10): """ Initialize a list of `batch_size` 4x4 SE(3) transforms. """ device = torch.device("cuda:0") transform = torch.zeros(batch_size, 4, 4, dtype=torch.float32, device=device) transform[:, :3, :3] = random_rotations( batch_size, dtype=torch.float32, device=device ) transform[:, 3, :3] = torch.randn( (batch_size, 3), dtype=torch.float32, device=device ) transform[:, 3, 3] = 1.0 return transform def test_se3_exp_output_format(self, batch_size: int = 100): """ Check that the output of `se3_exp_map` is a valid SE3 matrix. """ transform = se3_exp_map(TestSE3.init_log_transform(batch_size=batch_size)) R = transform[:, :3, :3] T = transform[:, 3, :3] rest = transform[:, :, 3] Rdet = R.det() # check det(R)==1 self.assertClose(Rdet, torch.ones_like(Rdet), atol=1e-4) # check that the translation is a finite vector self.assertTrue(torch.isfinite(T).all()) # check last column == [0,0,0,1] last_col = rest.new_zeros(batch_size, 4) last_col[:, -1] = 1.0 self.assertClose(rest, last_col) def test_compare_with_precomputed(self): """ Compare the outputs against precomputed results. """ self.assertClose( se3_log_map(self.precomputed_transform), self.precomputed_log_transform, atol=1e-4, ) self.assertClose( self.precomputed_transform, se3_exp_map(self.precomputed_log_transform), atol=1e-4, ) def test_se3_exp_singularity(self, batch_size: int = 100): """ Tests whether the `se3_exp_map` is robust to the input vectors with low L2 norms, where the algorithm is numerically unstable. """ # generate random log-rotations with a tiny angle log_rot = TestSE3.init_log_transform(batch_size=batch_size) log_rot_small = log_rot * 1e-6 log_rot_small.requires_grad = True transforms = se3_exp_map(log_rot_small) # tests whether all outputs are finite self.assertTrue(torch.isfinite(transforms).all()) # tests whether all gradients are finite and not None loss = transforms.sum() loss.backward() self.assertIsNotNone(log_rot_small.grad) self.assertTrue(torch.isfinite(log_rot_small.grad).all()) def test_se3_log_singularity(self, batch_size: int = 100): """ Tests whether the `se3_log_map` is robust to the input matrices whose rotation angles and translations are close to the numerically unstable region (i.e. matrices with low rotation angles and 0 translation). """ # generate random rotations with a tiny angle device = torch.device("cuda:0") identity = torch.eye(3, device=device) rot180 = identity * torch.tensor([[1.0, -1.0, -1.0]], device=device) r = [identity, rot180] r.extend( [ torch.linalg.qr(identity + torch.randn_like(identity) * 1e-6)[0] + float(i > batch_size // 2) * (0.5 - torch.rand_like(identity)) * 1e-8 # this adds random noise to the second half # of the random orthogonal matrices to generate # near-orthogonal matrices for i in range(batch_size - 2) ] ) r = torch.stack(r) # tiny translations t = torch.randn(batch_size, 3, dtype=r.dtype, device=device) * 1e-6 # create the transform matrix transform = torch.zeros(batch_size, 4, 4, dtype=torch.float32, device=device) transform[:, :3, :3] = r transform[:, 3, :3] = t transform[:, 3, 3] = 1.0 transform.requires_grad = True # the log of the transform log_transform = se3_log_map(transform, eps=1e-4, cos_bound=1e-4) # tests whether all outputs are finite self.assertTrue(torch.isfinite(log_transform).all()) # tests whether all gradients are finite and not None loss = log_transform.sum() loss.backward() self.assertIsNotNone(transform.grad) self.assertTrue(torch.isfinite(transform.grad).all()) def test_se3_exp_zero_translation(self, batch_size: int = 100): """ Check that `se3_exp_map` with zero translation gives the same result as corresponding `so3_exp_map`. """ log_transform = TestSE3.init_log_transform(batch_size=batch_size) log_transform[:, :3] *= 0.0 transform = se3_exp_map(log_transform, eps=1e-8) transform_so3 = so3_exp_map(log_transform[:, 3:], eps=1e-8) self.assertClose( transform[:, :3, :3], transform_so3.permute(0, 2, 1), atol=1e-4 ) self.assertClose( transform[:, 3, :3], torch.zeros_like(transform[:, :3, 3]), atol=1e-4 ) def test_se3_log_zero_translation(self, batch_size: int = 100): """ Check that `se3_log_map` with zero translation gives the same result as corresponding `so3_log_map`. """ transform = TestSE3.init_transform(batch_size=batch_size) transform[:, 3, :3] *= 0.0 log_transform = se3_log_map(transform, eps=1e-8, cos_bound=1e-4) log_transform_so3 = so3_log_map(transform[:, :3, :3], eps=1e-8, cos_bound=1e-4) self.assertClose(log_transform[:, 3:], -log_transform_so3, atol=1e-4) self.assertClose( log_transform[:, :3], torch.zeros_like(log_transform[:, :3]), atol=1e-4 ) def test_se3_exp_to_log_to_exp(self, batch_size: int = 10000): """ Check that `se3_exp_map(se3_log_map(A))==A` for a batch of randomly generated SE(3) matrices `A`. """ transform = TestSE3.init_transform(batch_size=batch_size) # Limit test transforms to those not around the singularity where # the rotation angle~=pi. nonsingular = so3_rotation_angle(transform[:, :3, :3]) < 3.134 transform = transform[nonsingular] transform_ = se3_exp_map( se3_log_map(transform, eps=1e-8, cos_bound=0.0), eps=1e-8 ) self.assertClose(transform, transform_, atol=0.02) def test_se3_log_to_exp_to_log(self, batch_size: int = 100): """ Check that `se3_log_map(se3_exp_map(log_transform))==log_transform` for a randomly generated batch of SE(3) matrix logarithms `log_transform`. """ log_transform = TestSE3.init_log_transform(batch_size=batch_size) log_transform_ = se3_log_map(se3_exp_map(log_transform, eps=1e-8), eps=1e-8) self.assertClose(log_transform, log_transform_, atol=1e-1) def test_bad_se3_input_value_err(self): """ Tests whether `se3_exp_map` and `se3_log_map` correctly return a ValueError if called with an argument of incorrect shape, or with an tensor containing illegal values. """ device = torch.device("cuda:0") for size in ([5, 4], [3, 4, 5], [3, 5, 6]): log_transform = torch.randn(size=size, device=device) with self.assertRaises(ValueError): se3_exp_map(log_transform) for size in ([5, 4], [3, 4, 5], [3, 5, 6], [2, 2, 3, 4]): transform = torch.randn(size=size, device=device) with self.assertRaises(ValueError): se3_log_map(transform) # Test the case where transform[:, :, :3] != 0. transform = torch.rand(size=[5, 4, 4], device=device) + 0.1 with self.assertRaises(ValueError): se3_log_map(transform) @staticmethod def se3_expmap(batch_size: int = 10): log_transform = TestSE3.init_log_transform(batch_size=batch_size) torch.cuda.synchronize() def compute_transforms(): se3_exp_map(log_transform) torch.cuda.synchronize() return compute_transforms @staticmethod def se3_logmap(batch_size: int = 10): log_transform = TestSE3.init_transform(batch_size=batch_size) torch.cuda.synchronize() def compute_logs(): se3_log_map(log_transform) torch.cuda.synchronize() return compute_logs