# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import unittest from functools import partial from itertools import product from typing import Tuple import numpy as np import torch from pytorch3d.ops import ( add_pointclouds_to_volumes, add_points_features_to_volume_densities_features, ) from pytorch3d.ops.points_to_volumes import _points_to_volumes from pytorch3d.ops.sample_points_from_meshes import sample_points_from_meshes from pytorch3d.structures.meshes import Meshes from pytorch3d.structures.pointclouds import Pointclouds from pytorch3d.structures.volumes import Volumes from pytorch3d.transforms.so3 import so3_exp_map from .common_testing import TestCaseMixin DEBUG = False if DEBUG: import os import tempfile from PIL import Image def init_cube_point_cloud(batch_size: int, n_points: int, device: str, rotate_y: bool): """ Generate a random point cloud of `n_points` whose points are sampled from faces of a 3D cube. """ # create the cube mesh batch_size times meshes = TestPointsToVolumes.init_cube_mesh(batch_size=batch_size, device=device) # generate point clouds by sampling points from the meshes pcl = sample_points_from_meshes(meshes, num_samples=n_points, return_normals=False) # colors of the cube sides clrs = [ [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 0.0, 1.0], ] # init the color tensor "rgb" rgb = torch.zeros_like(pcl) # color each side of the cube with a constant color clri = 0 for dim in (0, 1, 2): for offs in (0.0, 1.0): current_face_verts = (pcl[:, :, dim] - offs).abs() <= 1e-2 for bi in range(batch_size): rgb[bi, current_face_verts[bi], :] = torch.tensor(clrs[clri]).type_as( pcl ) clri += 1 if rotate_y: # uniformly spaced rotations around y axis R = init_uniform_y_rotations(batch_size=batch_size, device=device) # rotate the point clouds around y axis pcl = torch.bmm(pcl - 0.5, R) + 0.5 return pcl, rgb def init_volume_boundary_pointcloud( batch_size: int, volume_size: Tuple[int, int, int], n_points: int, interp_mode: str, device: str, require_grad: bool = False, ): """ Initialize a point cloud that closely follows a boundary of a volume with a given size. The volume buffer is initialized as well. """ # generate a 3D point cloud sampled from sides of a [0,1] cube xyz, rgb = init_cube_point_cloud( batch_size, n_points=n_points, device=device, rotate_y=True ) # make volume_size tensor volume_size_t = torch.tensor(volume_size, dtype=xyz.dtype, device=xyz.device) if interp_mode == "trilinear": # make the xyz locations fall on the boundary of the # first/last two voxels along each spatial dimension of the # volume - this properly checks the correctness of the # trilinear interpolation scheme xyz = (xyz - 0.5) * ((volume_size_t - 2) / (volume_size_t - 1))[[2, 1, 0]] + 0.5 # rescale the cube pointcloud to overlap with the volume sides # of the volume rel_scale = volume_size_t / volume_size[0] xyz = xyz * rel_scale[[2, 1, 0]][None, None] # enable grad accumulation for the differentiability check xyz.requires_grad = require_grad rgb.requires_grad = require_grad # create the pointclouds structure pointclouds = Pointclouds(xyz, features=rgb) # set the volume translation so that the point cloud is centered # around 0 volume_translation = -0.5 * rel_scale[[2, 1, 0]] # set the voxel size to 1 / (volume_size-1) volume_voxel_size = 1 / (volume_size[0] - 1.0) # instantiate the volumes initial_volumes = Volumes( features=xyz.new_zeros(batch_size, 3, *volume_size), densities=xyz.new_zeros(batch_size, 1, *volume_size), volume_translation=volume_translation, voxel_size=volume_voxel_size, ) return pointclouds, initial_volumes def init_uniform_y_rotations(batch_size: int, device: torch.device): """ Generate a batch of `batch_size` 3x3 rotation matrices around y-axis whose angles are uniformly distributed between 0 and 2 pi. """ axis = torch.tensor([0.0, 1.0, 0.0], device=device, dtype=torch.float32) angles = torch.linspace(0, 2.0 * np.pi, batch_size + 1, device=device) angles = angles[:batch_size] log_rots = axis[None, :] * angles[:, None] R = so3_exp_map(log_rots) return R class TestPointsToVolumes(TestCaseMixin, unittest.TestCase): def setUp(self) -> None: np.random.seed(42) torch.manual_seed(42) @staticmethod def add_points_to_volumes( batch_size: int, volume_size: Tuple[int, int, int], n_points: int, interp_mode: str, device: str, ): (pointclouds, initial_volumes) = init_volume_boundary_pointcloud( batch_size=batch_size, volume_size=volume_size, n_points=n_points, interp_mode=interp_mode, require_grad=False, device=device, ) torch.cuda.synchronize() def _add_points_to_volumes(): add_pointclouds_to_volumes(pointclouds, initial_volumes, mode=interp_mode) torch.cuda.synchronize() return _add_points_to_volumes @staticmethod def stack_4d_tensor_to_3d(arr): n = arr.shape[0] H = int(np.ceil(np.sqrt(n))) W = int(np.ceil(n / H)) n_add = H * W - n arr = torch.cat((arr, torch.zeros_like(arr[:1]).repeat(n_add, 1, 1, 1))) rows = torch.chunk(arr, chunks=W, dim=0) arr3d = torch.cat([torch.cat(list(row), dim=2) for row in rows], dim=1) return arr3d @staticmethod def init_cube_mesh(batch_size: int, device: str): """ Generate a batch of `batch_size` cube meshes. """ device_ = torch.device(device) verts, faces = [], [] for _ in range(batch_size): v = torch.tensor( [ [0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 0.0, 1.0], [0.0, 0.0, 1.0], ], dtype=torch.float32, device=device_, ) verts.append(v) faces.append( torch.tensor( [ [0, 2, 1], [0, 3, 2], [2, 3, 4], [2, 4, 5], [1, 2, 5], [1, 5, 6], [0, 7, 4], [0, 4, 3], [5, 4, 7], [5, 7, 6], [0, 6, 7], [0, 1, 6], ], dtype=torch.int64, device=device_, ) ) faces = torch.stack(faces) verts = torch.stack(verts) simpleces = Meshes(verts=verts, faces=faces) return simpleces def test_from_point_cloud(self, interp_mode="trilinear"): """ Generates a volume from a random point cloud sampled from faces of a 3D cube. Since each side of the cube is homogeneously colored with a different color, this should result in a volume with a predefined homogeneous color of the cells along its borders and black interior. The test is run for both cube and non-cube shaped volumes. """ # batch_size = 4 sides of the cube batch_size = 4 for volume_size in ([25, 25, 25], [30, 25, 15]): for python, interp_mode in product([True, False], ["trilinear", "nearest"]): (pointclouds, initial_volumes) = init_volume_boundary_pointcloud( volume_size=volume_size, n_points=int(1e5), interp_mode=interp_mode, batch_size=batch_size, require_grad=True, device="cuda:0", ) volumes = add_pointclouds_to_volumes( pointclouds, initial_volumes, mode=interp_mode, _python=python, ) V_color, V_density = volumes.features(), volumes.densities() # expected colors of different cube sides clr_sides = torch.tensor( [ [[1.0, 1.0, 1.0], [1.0, 0.0, 1.0]], [[1.0, 0.0, 0.0], [1.0, 1.0, 0.0]], [[1.0, 0.0, 1.0], [1.0, 1.0, 1.0]], [[1.0, 1.0, 0.0], [1.0, 0.0, 0.0]], ], dtype=V_color.dtype, device=V_color.device, ) clr_ambient = torch.tensor( [0.0, 0.0, 0.0], dtype=V_color.dtype, device=V_color.device ) clr_top_bot = torch.tensor( [[0.0, 1.0, 0.0], [0.0, 1.0, 1.0]], dtype=V_color.dtype, device=V_color.device, ) if DEBUG: outdir = tempfile.gettempdir() + "/test_points_to_volumes" os.makedirs(outdir, exist_ok=True) for slice_dim in (1, 2): for vidx in range(V_color.shape[0]): vim = V_color.detach()[vidx].split(1, dim=slice_dim) vim = torch.stack([v.squeeze() for v in vim]) vim = TestPointsToVolumes.stack_4d_tensor_to_3d(vim.cpu()) im = Image.fromarray( (vim.numpy() * 255.0) .astype(np.uint8) .transpose(1, 2, 0) ) outfile = ( outdir + f"/rgb_{interp_mode}" + f"_{str(volume_size).replace(' ', '')}" + f"_{vidx:003d}_sldim{slice_dim}.png" ) im.save(outfile) print("exported %s" % outfile) # check the density V_density # first binarize the density V_density_bin = (V_density > 1e-4).type_as(V_density) d_one = V_density.new_ones(1) d_zero = V_density.new_zeros(1) for vidx in range(V_color.shape[0]): # the first/last depth-wise slice has to be filled with 1.0 self._check_volume_slice_color_density( V_density_bin[vidx], 1, interp_mode, d_one, "first" ) self._check_volume_slice_color_density( V_density_bin[vidx], 1, interp_mode, d_one, "last" ) # the middle depth-wise slices have to be empty self._check_volume_slice_color_density( V_density_bin[vidx], 1, interp_mode, d_zero, "middle" ) # the top/bottom slices have to be filled with 1.0 self._check_volume_slice_color_density( V_density_bin[vidx], 2, interp_mode, d_one, "first" ) self._check_volume_slice_color_density( V_density_bin[vidx], 2, interp_mode, d_one, "last" ) # check the colors for vidx in range(V_color.shape[0]): self._check_volume_slice_color_density( V_color[vidx], 1, interp_mode, clr_sides[vidx][0], "first" ) self._check_volume_slice_color_density( V_color[vidx], 1, interp_mode, clr_sides[vidx][1], "last" ) self._check_volume_slice_color_density( V_color[vidx], 1, interp_mode, clr_ambient, "middle" ) self._check_volume_slice_color_density( V_color[vidx], 2, interp_mode, clr_top_bot[0], "first" ) self._check_volume_slice_color_density( V_color[vidx], 2, interp_mode, clr_top_bot[1], "last" ) # check differentiability loss = V_color.mean() + V_density.mean() loss.backward() rgb = pointclouds.features_padded() xyz = pointclouds.points_padded() for field in (xyz, rgb): if interp_mode == "nearest" and (field is xyz): # this does not produce grads w.r.t. xyz self.assertIsNone(field.grad) else: self.assertTrue(torch.isfinite(field.grad.data).all()) def test_defaulted_arguments(self): points = torch.rand(30, 1000, 3) features = torch.rand(30, 1000, 5) _, densities = add_points_features_to_volume_densities_features( points, features, torch.zeros(30, 1, 32, 32, 32), torch.zeros(30, 5, 32, 32, 32), ) self.assertClose(torch.sum(densities), torch.tensor(30 * 1000.0), atol=0.1) def test_unscaled(self): D = 5 P = 1000 B, C, H, W = 2, 3, D, D densities = torch.zeros(B, 1, D, H, W) features = torch.zeros(B, C, D, H, W) volumes = Volumes(densities=densities, features=features) points = torch.rand(B, 1000, 3) * (D - 1) - ((D - 1) * 0.5) point_features = torch.rand(B, 1000, C) pointclouds = Pointclouds(points=points, features=point_features) volumes2 = add_pointclouds_to_volumes( pointclouds, volumes, rescale_features=False ) self.assertConstant(volumes2.densities().sum([2, 3, 4]) / P, 1, atol=1e-5) self.assertConstant(volumes2.features().sum([2, 3, 4]) / P, 0.5, atol=0.03) def _check_volume_slice_color_density( self, V, split_dim, interp_mode, clr_gt, slice_type, border=3 ): # decompose the volume to individual slices along split_dim vim = V.detach().split(1, dim=split_dim) vim = torch.stack([v.squeeze(split_dim) for v in vim]) # determine which slices should be compared to clr_gt based on # the 'slice_type' input if slice_type == "first": slice_dims = (0, 1) if interp_mode == "trilinear" else (0,) elif slice_type == "last": slice_dims = (-1, -2) if interp_mode == "trilinear" else (-1,) elif slice_type == "middle": internal_border = 2 if interp_mode == "trilinear" else 1 slice_dims = torch.arange(internal_border, vim.shape[0] - internal_border) else: raise ValueError(slice_type) # compute the average error within each slice clr_diff = ( vim[slice_dims, :, border:-border, border:-border] - clr_gt[None, :, None, None] ) clr_diff = clr_diff.abs().mean(dim=(2, 3)).view(-1) # check that all per-slice avg errors vanish self.assertClose(clr_diff, torch.zeros_like(clr_diff), atol=1e-2) class TestRawFunction(TestCaseMixin, unittest.TestCase): """ Testing the _C.points_to_volumes function through its wrapper _points_to_volumes. """ def setUp(self) -> None: torch.manual_seed(42) def test_grad_corners_splat_cpu(self): self.do_gradcheck(torch.device("cpu"), True, True) def test_grad_corners_round_cpu(self): self.do_gradcheck(torch.device("cpu"), False, True) def test_grad_splat_cpu(self): self.do_gradcheck(torch.device("cpu"), True, False) def test_grad_round_cpu(self): self.do_gradcheck(torch.device("cpu"), False, False) def test_grad_corners_splat_cuda(self): self.do_gradcheck(torch.device("cuda:0"), True, True) def test_grad_corners_round_cuda(self): self.do_gradcheck(torch.device("cuda:0"), False, True) def test_grad_splat_cuda(self): self.do_gradcheck(torch.device("cuda:0"), True, False) def test_grad_round_cuda(self): self.do_gradcheck(torch.device("cuda:0"), False, False) def do_gradcheck(self, device, splat: bool, align_corners: bool): """ Use gradcheck to verify the gradient of _points_to_volumes with random input. """ N, C, D, H, W, P = 2, 4, 5, 6, 7, 5 points_3d = ( torch.rand((N, P, 3), device=device, dtype=torch.float64) * 0.8 + 0.1 ) points_features = torch.rand((N, P, C), device=device, dtype=torch.float64) volume_densities = torch.zeros((N, 1, D, H, W), device=device) volume_features = torch.zeros((N, C, D, H, W), device=device) volume_densities_scale = torch.rand_like(volume_densities) volume_features_scale = torch.rand_like(volume_features) grid_sizes = torch.tensor([D, H, W], dtype=torch.int64, device=device).expand( N, 3 ) mask = torch.ones((N, P), device=device) mask[:, 0] = 0 align_corners = False def f(points_3d_, points_features_): (volume_densities_, volume_features_) = _points_to_volumes( points_3d_.to(torch.float32), points_features_.to(torch.float32), volume_densities.clone(), volume_features.clone(), grid_sizes, 2.0, mask, align_corners, splat, ) density = (volume_densities_ * volume_densities_scale).sum() features = (volume_features_ * volume_features_scale).sum() return density, features base = f(points_3d.clone(), points_features.clone()) self.assertGreater(base[0], 0) self.assertGreater(base[1], 0) points_features.requires_grad = True if splat: points_3d.requires_grad = True torch.autograd.gradcheck( f, (points_3d, points_features), check_undefined_grad=False, eps=2e-4, atol=0.01, ) else: torch.autograd.gradcheck( partial(f, points_3d), points_features, check_undefined_grad=False, eps=2e-3, atol=0.001, ) def test_single_corners_round_cpu(self): self.single_point(torch.device("cpu"), False, True) def test_single_corners_splat_cpu(self): self.single_point(torch.device("cpu"), True, True) def test_single_round_cpu(self): self.single_point(torch.device("cpu"), False, False) def test_single_splat_cpu(self): self.single_point(torch.device("cpu"), True, False) def test_single_corners_round_cuda(self): self.single_point(torch.device("cuda:0"), False, True) def test_single_corners_splat_cuda(self): self.single_point(torch.device("cuda:0"), True, True) def test_single_round_cuda(self): self.single_point(torch.device("cuda:0"), False, False) def test_single_splat_cuda(self): self.single_point(torch.device("cuda:0"), True, False) def single_point(self, device, splat: bool, align_corners: bool): """ Check the outcome of _points_to_volumes where a single point exists which lines up with a single voxel. """ D, H, W = (6, 6, 11) if align_corners else (5, 5, 10) N, C, P = 1, 1, 1 if align_corners: points_3d = torch.tensor([[[-0.2, 0.2, -0.2]]], device=device) else: points_3d = torch.tensor([[[-0.3, 0.4, -0.4]]], device=device) points_features = torch.zeros((N, P, C), device=device) volume_densities = torch.zeros((N, 1, D, H, W), device=device) volume_densities_expected = torch.zeros((N, 1, D, H, W), device=device) volume_features = torch.zeros((N, C, D, H, W), device=device) grid_sizes = torch.tensor([D, H, W], dtype=torch.int64, device=device).expand( N, 3 ) mask = torch.ones((N, P), device=device) point_weight = 19.0 volume_densities_, volume_features_ = _points_to_volumes( points_3d, points_features, volume_densities, volume_features, grid_sizes, point_weight, mask, align_corners, splat, ) self.assertTrue(volume_densities_.is_set_to(volume_densities)) self.assertTrue(volume_features_.is_set_to(volume_features)) if align_corners: volume_densities_expected[0, 0, 2, 3, 4] = point_weight else: volume_densities_expected[0, 0, 1, 3, 3] = point_weight self.assertClose(volume_densities, volume_densities_expected)