4 Commits

Author SHA1 Message Date
David Novotny
365945b1fd Pointcloud normals estimation.
Summary: Estimates normals of a point cloud.

Reviewed By: gkioxari

Differential Revision: D20860182

fbshipit-source-id: 652ec2743fa645e02c01ffa37c2971bf27b89cef
2020-04-16 18:36:19 -07:00
David Novotny
8abbe22ffb ICP - point-to-point version
Summary:
The iterative closest point algorithm - point-to-point version.

Output of `bm_iterative_closest_point`:
Argument key: `batch_size dim n_points_X n_points_Y use_pointclouds`

```
Benchmark                                         Avg Time(μs)      Peak Time(μs) Iterations
--------------------------------------------------------------------------------
IterativeClosestPoint_1_3_100_100_False              107569          111323              5
IterativeClosestPoint_1_3_100_1000_False             118972          122306              5
IterativeClosestPoint_1_3_1000_100_False             108576          110978              5
IterativeClosestPoint_1_3_1000_1000_False            331836          333515              2
IterativeClosestPoint_1_20_100_100_False             134387          137842              4
IterativeClosestPoint_1_20_100_1000_False            149218          153405              4
IterativeClosestPoint_1_20_1000_100_False            414248          416595              2
IterativeClosestPoint_1_20_1000_1000_False           374318          374662              2
IterativeClosestPoint_10_3_100_100_False             539852          539852              1
IterativeClosestPoint_10_3_100_1000_False            752784          752784              1
IterativeClosestPoint_10_3_1000_100_False           1070700         1070700              1
IterativeClosestPoint_10_3_1000_1000_False          1164020         1164020              1
IterativeClosestPoint_10_20_100_100_False            374548          377337              2
IterativeClosestPoint_10_20_100_1000_False           472764          476685              2
IterativeClosestPoint_10_20_1000_100_False          1457175         1457175              1
IterativeClosestPoint_10_20_1000_1000_False         2195820         2195820              1
IterativeClosestPoint_1_3_100_100_True               110084          115824              5
IterativeClosestPoint_1_3_100_1000_True              142728          147696              4
IterativeClosestPoint_1_3_1000_100_True              212966          213966              3
IterativeClosestPoint_1_3_1000_1000_True             369130          375114              2
IterativeClosestPoint_10_3_100_100_True              354615          355179              2
IterativeClosestPoint_10_3_100_1000_True             451815          452704              2
IterativeClosestPoint_10_3_1000_100_True             511833          511833              1
IterativeClosestPoint_10_3_1000_1000_True            798453          798453              1
--------------------------------------------------------------------------------
```

Reviewed By: shapovalov, gkioxari

Differential Revision: D19909952

fbshipit-source-id: f77fadc88fb7c53999909d594114b182ee2a3def
2020-04-16 14:02:16 -07:00
Jeremy Reizenstein
b87058c62a fix recent lint
Summary: lint clean again

Reviewed By: patricklabatut

Differential Revision: D20868775

fbshipit-source-id: ade4301c1012c5c6943186432465215701d635a9
2020-04-06 06:41:00 -07:00
Roman Shapovalov
e37085d999 Weighted Umeyama.
Summary:
1. Introduced weights to Umeyama implementation. This will be needed for weighted ePnP but is useful on its own.
2. Refactored to use the same code for the Pointclouds mask and passed weights.
3. Added test cases with random weights.
4. Fixed a bug in tests that calls the function with 0 points (fails randomly in Pytorch 1.3, will be fixed in the next release: https://github.com/pytorch/pytorch/issues/31421 ).

Reviewed By: gkioxari

Differential Revision: D20070293

fbshipit-source-id: e9f549507ef6dcaa0688a0f17342e6d7a9a4336c
2020-04-03 02:59:11 -07:00