Summary:
Allow a module's param_group member to specify overrides to the param groups of its members or their members.
Also logging for param group assignments.
This allows defining `params.basis_matrix` in the param_groups of a voxel_grid.
Reviewed By: shapovalov
Differential Revision: D41080667
fbshipit-source-id: 49f3b0e5b36e496f78701db0699cbb8a7e20c51e
Summary:
Adds the ability to have different learning rates for different parts of the model. The trainable parts of the implicitron have a new member
param_groups: dictionary where keys are names of individual parameters,
or module’s members and values are the parameter group where the
parameter/member will be sorted to. "self" key is used to denote the
parameter group at the module level. Possible keys, including the "self" key
do not have to be defined. By default all parameters are put into "default"
parameter group and have the learning rate defined in the optimizer,
it can be overriden at the:
- module level with “self” key, all the parameters and child
module s parameters will be put to that parameter group
- member level, which is the same as if the `param_groups` in that
member has key=“self” and value equal to that parameter group.
This is useful if members do not have `param_groups`, for
example torch.nn.Linear.
- parameter level, parameter with the same name as the key
will be put to that parameter group.
And in the optimizer factory, parameters and their learning rates are recursively gathered.
Reviewed By: shapovalov
Differential Revision: D40145802
fbshipit-source-id: 631c02b8d79ee1c0eb4c31e6e42dbd3d2882078a
Summary: Allow using the new `foreach` option on optimizers.
Reviewed By: shapovalov
Differential Revision: D39694843
fbshipit-source-id: 97109c245b669bc6edff0f246893f95b7ae71f90
Summary: Linear followed by exponential LR progression. Needed for making Blender scenes converge.
Reviewed By: kjchalup
Differential Revision: D38557007
fbshipit-source-id: ad630dbc5b8fabcb33eeb5bdeed5e4f31360bac2
Summary:
Stats are logically connected to the training loop, not to the model. Hence, moving to the training loop.
Also removing resume_epoch from OptimizerFactory in favor of a single place - ModelFactory. This removes the need for config consistency checks etc.
Reviewed By: kjchalup
Differential Revision: D38313475
fbshipit-source-id: a1d188a63e28459df381ff98ad8acdcdb14887b7
Summary:
This large diff rewrites a significant portion of Implicitron's config hierarchy. The new hierarchy, and some of the default implementation classes, are as follows:
```
Experiment
data_source: ImplicitronDataSource
dataset_map_provider
data_loader_map_provider
model_factory: ImplicitronModelFactory
model: GenericModel
optimizer_factory: ImplicitronOptimizerFactory
training_loop: ImplicitronTrainingLoop
evaluator: ImplicitronEvaluator
```
1) Experiment (used to be ExperimentConfig) is now a top-level Configurable and contains as members mainly (mostly new) high-level factory Configurables.
2) Experiment's job is to run factories, do some accelerate setup and then pass the results to the main training loop.
3) ImplicitronOptimizerFactory and ImplicitronModelFactory are new high-level factories that create the optimizer, scheduler, model, and stats objects.
4) TrainingLoop is a new configurable that runs the main training loop and the inner train-validate step.
5) Evaluator is a new configurable that TrainingLoop uses to run validation/test steps.
6) GenericModel is not the only model choice anymore. Instead, ImplicitronModelBase (by default instantiated with GenericModel) is a member of Experiment and can be easily replaced by a custom implementation by the user.
All the new Configurables are children of ReplaceableBase, and can be easily replaced with custom implementations.
In addition, I added support for the exponential LR schedule, updated the config files and the test, as well as added a config file that reproduces NERF results and a test to run the repro experiment.
Reviewed By: bottler
Differential Revision: D37723227
fbshipit-source-id: b36bee880d6aa53efdd2abfaae4489d8ab1e8a27