separate multigpu tests

Reviewed By: MichaelRamamonjisoa

Differential Revision: D83477594

fbshipit-source-id: 5ea67543e288e9a06ee5141f436e879aa5cfb7f3
This commit is contained in:
Jeremy Reizenstein 2025-10-09 08:17:20 -07:00 committed by meta-codesync[bot]
parent 7711bf34a8
commit fc6a6b8951
2 changed files with 167 additions and 77 deletions

View File

@ -17,7 +17,7 @@ from pytorch3d.structures.pointclouds import (
Pointclouds, Pointclouds,
) )
from .common_testing import needs_multigpu, TestCaseMixin from .common_testing import TestCaseMixin
class TestPointclouds(TestCaseMixin, unittest.TestCase): class TestPointclouds(TestCaseMixin, unittest.TestCase):
@ -703,82 +703,6 @@ class TestPointclouds(TestCaseMixin, unittest.TestCase):
self.assertEqual(cuda_device, cloud.device) self.assertEqual(cuda_device, cloud.device)
self.assertIsNot(cloud, converted_cloud) self.assertIsNot(cloud, converted_cloud)
@needs_multigpu
def test_to_list(self):
cloud = self.init_cloud(5, 100, 10)
device = torch.device("cuda:1")
new_cloud = cloud.to(device)
self.assertTrue(new_cloud.device == device)
self.assertTrue(cloud.device == torch.device("cuda:0"))
for attrib in [
"points_padded",
"points_packed",
"normals_padded",
"normals_packed",
"features_padded",
"features_packed",
"num_points_per_cloud",
"cloud_to_packed_first_idx",
"padded_to_packed_idx",
]:
self.assertClose(
getattr(new_cloud, attrib)().cpu(), getattr(cloud, attrib)().cpu()
)
for i in range(len(cloud)):
self.assertClose(
cloud.points_list()[i].cpu(), new_cloud.points_list()[i].cpu()
)
self.assertClose(
cloud.normals_list()[i].cpu(), new_cloud.normals_list()[i].cpu()
)
self.assertClose(
cloud.features_list()[i].cpu(), new_cloud.features_list()[i].cpu()
)
self.assertTrue(all(cloud.valid.cpu() == new_cloud.valid.cpu()))
self.assertTrue(cloud.equisized == new_cloud.equisized)
self.assertTrue(cloud._N == new_cloud._N)
self.assertTrue(cloud._P == new_cloud._P)
self.assertTrue(cloud._C == new_cloud._C)
@needs_multigpu
def test_to_tensor(self):
cloud = self.init_cloud(5, 100, 10, lists_to_tensors=True)
device = torch.device("cuda:1")
new_cloud = cloud.to(device)
self.assertTrue(new_cloud.device == device)
self.assertTrue(cloud.device == torch.device("cuda:0"))
for attrib in [
"points_padded",
"points_packed",
"normals_padded",
"normals_packed",
"features_padded",
"features_packed",
"num_points_per_cloud",
"cloud_to_packed_first_idx",
"padded_to_packed_idx",
]:
self.assertClose(
getattr(new_cloud, attrib)().cpu(), getattr(cloud, attrib)().cpu()
)
for i in range(len(cloud)):
self.assertClose(
cloud.points_list()[i].cpu(), new_cloud.points_list()[i].cpu()
)
self.assertClose(
cloud.normals_list()[i].cpu(), new_cloud.normals_list()[i].cpu()
)
self.assertClose(
cloud.features_list()[i].cpu(), new_cloud.features_list()[i].cpu()
)
self.assertTrue(all(cloud.valid.cpu() == new_cloud.valid.cpu()))
self.assertTrue(cloud.equisized == new_cloud.equisized)
self.assertTrue(cloud._N == new_cloud._N)
self.assertTrue(cloud._P == new_cloud._P)
self.assertTrue(cloud._C == new_cloud._C)
def test_split(self): def test_split(self):
clouds = self.init_cloud(5, 100, 10) clouds = self.init_cloud(5, 100, 10)
split_sizes = [2, 3] split_sizes = [2, 3]

View File

@ -0,0 +1,166 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import numpy as np
import torch
from pytorch3d.structures.pointclouds import Pointclouds
from .common_testing import needs_multigpu, TestCaseMixin
class TestPointclouds(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
np.random.seed(42)
torch.manual_seed(42)
@staticmethod
def init_cloud(
num_clouds: int = 3,
max_points: int = 100,
channels: int = 4,
lists_to_tensors: bool = False,
with_normals: bool = True,
with_features: bool = True,
min_points: int = 0,
requires_grad: bool = False,
):
"""
Function to generate a Pointclouds object of N meshes with
random number of points.
Args:
num_clouds: Number of clouds to generate.
channels: Number of features.
max_points: Max number of points per cloud.
lists_to_tensors: Determines whether the generated clouds should be
constructed from lists (=False) or
tensors (=True) of points/normals/features.
with_normals: bool whether to include normals
with_features: bool whether to include features
min_points: Min number of points per cloud
Returns:
Pointclouds object.
"""
device = torch.device("cuda:0")
p = torch.randint(low=min_points, high=max_points, size=(num_clouds,))
if lists_to_tensors:
p.fill_(p[0])
points_list = [
torch.rand(
(i, 3), device=device, dtype=torch.float32, requires_grad=requires_grad
)
for i in p
]
normals_list, features_list = None, None
if with_normals:
normals_list = [
torch.rand(
(i, 3),
device=device,
dtype=torch.float32,
requires_grad=requires_grad,
)
for i in p
]
if with_features:
features_list = [
torch.rand(
(i, channels),
device=device,
dtype=torch.float32,
requires_grad=requires_grad,
)
for i in p
]
if lists_to_tensors:
points_list = torch.stack(points_list)
if with_normals:
normals_list = torch.stack(normals_list)
if with_features:
features_list = torch.stack(features_list)
return Pointclouds(points_list, normals=normals_list, features=features_list)
@needs_multigpu
def test_to_list(self):
cloud = self.init_cloud(5, 100, 10)
device = torch.device("cuda:1")
new_cloud = cloud.to(device)
self.assertTrue(new_cloud.device == device)
self.assertTrue(cloud.device == torch.device("cuda:0"))
for attrib in [
"points_padded",
"points_packed",
"normals_padded",
"normals_packed",
"features_padded",
"features_packed",
"num_points_per_cloud",
"cloud_to_packed_first_idx",
"padded_to_packed_idx",
]:
self.assertClose(
getattr(new_cloud, attrib)().cpu(), getattr(cloud, attrib)().cpu()
)
for i in range(len(cloud)):
self.assertClose(
cloud.points_list()[i].cpu(), new_cloud.points_list()[i].cpu()
)
self.assertClose(
cloud.normals_list()[i].cpu(), new_cloud.normals_list()[i].cpu()
)
self.assertClose(
cloud.features_list()[i].cpu(), new_cloud.features_list()[i].cpu()
)
self.assertTrue(all(cloud.valid.cpu() == new_cloud.valid.cpu()))
self.assertTrue(cloud.equisized == new_cloud.equisized)
self.assertTrue(cloud._N == new_cloud._N)
self.assertTrue(cloud._P == new_cloud._P)
self.assertTrue(cloud._C == new_cloud._C)
@needs_multigpu
def test_to_tensor(self):
cloud = self.init_cloud(5, 100, 10, lists_to_tensors=True)
device = torch.device("cuda:1")
new_cloud = cloud.to(device)
self.assertTrue(new_cloud.device == device)
self.assertTrue(cloud.device == torch.device("cuda:0"))
for attrib in [
"points_padded",
"points_packed",
"normals_padded",
"normals_packed",
"features_padded",
"features_packed",
"num_points_per_cloud",
"cloud_to_packed_first_idx",
"padded_to_packed_idx",
]:
self.assertClose(
getattr(new_cloud, attrib)().cpu(), getattr(cloud, attrib)().cpu()
)
for i in range(len(cloud)):
self.assertClose(
cloud.points_list()[i].cpu(), new_cloud.points_list()[i].cpu()
)
self.assertClose(
cloud.normals_list()[i].cpu(), new_cloud.normals_list()[i].cpu()
)
self.assertClose(
cloud.features_list()[i].cpu(), new_cloud.features_list()[i].cpu()
)
self.assertTrue(all(cloud.valid.cpu() == new_cloud.valid.cpu()))
self.assertTrue(cloud.equisized == new_cloud.equisized)
self.assertTrue(cloud._N == new_cloud._N)
self.assertTrue(cloud._P == new_cloud._P)
self.assertTrue(cloud._C == new_cloud._C)