mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-20 14:20:38 +08:00
separate multigpu tests
Reviewed By: MichaelRamamonjisoa Differential Revision: D83477594 fbshipit-source-id: 5ea67543e288e9a06ee5141f436e879aa5cfb7f3
This commit is contained in:
committed by
meta-codesync[bot]
parent
7711bf34a8
commit
fc6a6b8951
@@ -17,7 +17,7 @@ from pytorch3d.structures.pointclouds import (
|
||||
Pointclouds,
|
||||
)
|
||||
|
||||
from .common_testing import needs_multigpu, TestCaseMixin
|
||||
from .common_testing import TestCaseMixin
|
||||
|
||||
|
||||
class TestPointclouds(TestCaseMixin, unittest.TestCase):
|
||||
@@ -703,82 +703,6 @@ class TestPointclouds(TestCaseMixin, unittest.TestCase):
|
||||
self.assertEqual(cuda_device, cloud.device)
|
||||
self.assertIsNot(cloud, converted_cloud)
|
||||
|
||||
@needs_multigpu
|
||||
def test_to_list(self):
|
||||
cloud = self.init_cloud(5, 100, 10)
|
||||
device = torch.device("cuda:1")
|
||||
|
||||
new_cloud = cloud.to(device)
|
||||
self.assertTrue(new_cloud.device == device)
|
||||
self.assertTrue(cloud.device == torch.device("cuda:0"))
|
||||
for attrib in [
|
||||
"points_padded",
|
||||
"points_packed",
|
||||
"normals_padded",
|
||||
"normals_packed",
|
||||
"features_padded",
|
||||
"features_packed",
|
||||
"num_points_per_cloud",
|
||||
"cloud_to_packed_first_idx",
|
||||
"padded_to_packed_idx",
|
||||
]:
|
||||
self.assertClose(
|
||||
getattr(new_cloud, attrib)().cpu(), getattr(cloud, attrib)().cpu()
|
||||
)
|
||||
for i in range(len(cloud)):
|
||||
self.assertClose(
|
||||
cloud.points_list()[i].cpu(), new_cloud.points_list()[i].cpu()
|
||||
)
|
||||
self.assertClose(
|
||||
cloud.normals_list()[i].cpu(), new_cloud.normals_list()[i].cpu()
|
||||
)
|
||||
self.assertClose(
|
||||
cloud.features_list()[i].cpu(), new_cloud.features_list()[i].cpu()
|
||||
)
|
||||
self.assertTrue(all(cloud.valid.cpu() == new_cloud.valid.cpu()))
|
||||
self.assertTrue(cloud.equisized == new_cloud.equisized)
|
||||
self.assertTrue(cloud._N == new_cloud._N)
|
||||
self.assertTrue(cloud._P == new_cloud._P)
|
||||
self.assertTrue(cloud._C == new_cloud._C)
|
||||
|
||||
@needs_multigpu
|
||||
def test_to_tensor(self):
|
||||
cloud = self.init_cloud(5, 100, 10, lists_to_tensors=True)
|
||||
device = torch.device("cuda:1")
|
||||
|
||||
new_cloud = cloud.to(device)
|
||||
self.assertTrue(new_cloud.device == device)
|
||||
self.assertTrue(cloud.device == torch.device("cuda:0"))
|
||||
for attrib in [
|
||||
"points_padded",
|
||||
"points_packed",
|
||||
"normals_padded",
|
||||
"normals_packed",
|
||||
"features_padded",
|
||||
"features_packed",
|
||||
"num_points_per_cloud",
|
||||
"cloud_to_packed_first_idx",
|
||||
"padded_to_packed_idx",
|
||||
]:
|
||||
self.assertClose(
|
||||
getattr(new_cloud, attrib)().cpu(), getattr(cloud, attrib)().cpu()
|
||||
)
|
||||
for i in range(len(cloud)):
|
||||
self.assertClose(
|
||||
cloud.points_list()[i].cpu(), new_cloud.points_list()[i].cpu()
|
||||
)
|
||||
self.assertClose(
|
||||
cloud.normals_list()[i].cpu(), new_cloud.normals_list()[i].cpu()
|
||||
)
|
||||
self.assertClose(
|
||||
cloud.features_list()[i].cpu(), new_cloud.features_list()[i].cpu()
|
||||
)
|
||||
self.assertTrue(all(cloud.valid.cpu() == new_cloud.valid.cpu()))
|
||||
self.assertTrue(cloud.equisized == new_cloud.equisized)
|
||||
self.assertTrue(cloud._N == new_cloud._N)
|
||||
self.assertTrue(cloud._P == new_cloud._P)
|
||||
self.assertTrue(cloud._C == new_cloud._C)
|
||||
|
||||
def test_split(self):
|
||||
clouds = self.init_cloud(5, 100, 10)
|
||||
split_sizes = [2, 3]
|
||||
|
||||
Reference in New Issue
Block a user