separate multigpu tests

Reviewed By: MichaelRamamonjisoa

Differential Revision: D83477594

fbshipit-source-id: 5ea67543e288e9a06ee5141f436e879aa5cfb7f3
This commit is contained in:
Jeremy Reizenstein
2025-10-09 08:17:20 -07:00
committed by meta-codesync[bot]
parent 7711bf34a8
commit fc6a6b8951
2 changed files with 167 additions and 77 deletions

View File

@@ -17,7 +17,7 @@ from pytorch3d.structures.pointclouds import (
Pointclouds,
)
from .common_testing import needs_multigpu, TestCaseMixin
from .common_testing import TestCaseMixin
class TestPointclouds(TestCaseMixin, unittest.TestCase):
@@ -703,82 +703,6 @@ class TestPointclouds(TestCaseMixin, unittest.TestCase):
self.assertEqual(cuda_device, cloud.device)
self.assertIsNot(cloud, converted_cloud)
@needs_multigpu
def test_to_list(self):
cloud = self.init_cloud(5, 100, 10)
device = torch.device("cuda:1")
new_cloud = cloud.to(device)
self.assertTrue(new_cloud.device == device)
self.assertTrue(cloud.device == torch.device("cuda:0"))
for attrib in [
"points_padded",
"points_packed",
"normals_padded",
"normals_packed",
"features_padded",
"features_packed",
"num_points_per_cloud",
"cloud_to_packed_first_idx",
"padded_to_packed_idx",
]:
self.assertClose(
getattr(new_cloud, attrib)().cpu(), getattr(cloud, attrib)().cpu()
)
for i in range(len(cloud)):
self.assertClose(
cloud.points_list()[i].cpu(), new_cloud.points_list()[i].cpu()
)
self.assertClose(
cloud.normals_list()[i].cpu(), new_cloud.normals_list()[i].cpu()
)
self.assertClose(
cloud.features_list()[i].cpu(), new_cloud.features_list()[i].cpu()
)
self.assertTrue(all(cloud.valid.cpu() == new_cloud.valid.cpu()))
self.assertTrue(cloud.equisized == new_cloud.equisized)
self.assertTrue(cloud._N == new_cloud._N)
self.assertTrue(cloud._P == new_cloud._P)
self.assertTrue(cloud._C == new_cloud._C)
@needs_multigpu
def test_to_tensor(self):
cloud = self.init_cloud(5, 100, 10, lists_to_tensors=True)
device = torch.device("cuda:1")
new_cloud = cloud.to(device)
self.assertTrue(new_cloud.device == device)
self.assertTrue(cloud.device == torch.device("cuda:0"))
for attrib in [
"points_padded",
"points_packed",
"normals_padded",
"normals_packed",
"features_padded",
"features_packed",
"num_points_per_cloud",
"cloud_to_packed_first_idx",
"padded_to_packed_idx",
]:
self.assertClose(
getattr(new_cloud, attrib)().cpu(), getattr(cloud, attrib)().cpu()
)
for i in range(len(cloud)):
self.assertClose(
cloud.points_list()[i].cpu(), new_cloud.points_list()[i].cpu()
)
self.assertClose(
cloud.normals_list()[i].cpu(), new_cloud.normals_list()[i].cpu()
)
self.assertClose(
cloud.features_list()[i].cpu(), new_cloud.features_list()[i].cpu()
)
self.assertTrue(all(cloud.valid.cpu() == new_cloud.valid.cpu()))
self.assertTrue(cloud.equisized == new_cloud.equisized)
self.assertTrue(cloud._N == new_cloud._N)
self.assertTrue(cloud._P == new_cloud._P)
self.assertTrue(cloud._C == new_cloud._C)
def test_split(self):
clouds = self.init_cloud(5, 100, 10)
split_sizes = [2, 3]