mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Split Volumes class to data and location part
Summary: Split Volumes class to data and location part so that location part can be reused in planned VoxelGrid classes. Reviewed By: bottler Differential Revision: D38782015 fbshipit-source-id: 489da09c5c236f3b81961ce9b09edbd97afaa7c8
This commit is contained in:
parent
fdaaa299a7
commit
f825f7e42c
@ -23,6 +23,7 @@ _VoxelSize = _ScalarOrVector
|
||||
_Translation = _Vector
|
||||
|
||||
_TensorBatch = Union[torch.Tensor, List[torch.Tensor], Tuple[torch.Tensor]]
|
||||
_ALL_CONTENT: slice = slice(0, None)
|
||||
|
||||
|
||||
class Volumes:
|
||||
@ -65,9 +66,9 @@ class Volumes:
|
||||
|
||||
VOLUME COORDINATES
|
||||
|
||||
Additionally, the `Volumes` class keeps track of the locations of the
|
||||
centers of the volume cells in the local volume coordinates as well as in
|
||||
the world coordinates.
|
||||
Additionally, using the `VolumeLocator` class the `Volumes` class keeps track
|
||||
of the locations of the centers of the volume cells in the local volume
|
||||
coordinates as well as in the world coordinates.
|
||||
|
||||
Local coordinates:
|
||||
- Represent the locations of the volume cells in the local coordinate
|
||||
@ -125,7 +126,7 @@ class Volumes:
|
||||
appropriate `world_coordinates` argument.
|
||||
|
||||
Internally, the mapping between `x_local` and `x_world` is represented
|
||||
as a `Transform3d` object `Volumes._local_to_world_transform`.
|
||||
as a `Transform3d` object `Volumes.VolumeLocator._local_to_world_transform`.
|
||||
Users can access the relevant transformations with the
|
||||
`Volumes.get_world_to_local_coords_transform()` and
|
||||
`Volumes.get_local_to_world_coords_transform()`
|
||||
@ -197,21 +198,24 @@ class Volumes:
|
||||
|
||||
# assign to the internal buffers
|
||||
self._densities = densities_
|
||||
self._grid_sizes = grid_sizes
|
||||
|
||||
# assign a coordinate transformation member
|
||||
self.locator = VolumeLocator(
|
||||
batch_size=len(self),
|
||||
grid_sizes=grid_sizes,
|
||||
voxel_size=voxel_size,
|
||||
volume_translation=volume_translation,
|
||||
device=self.device,
|
||||
)
|
||||
|
||||
# handle features
|
||||
self._features = None
|
||||
if features is not None:
|
||||
self._set_features(features)
|
||||
|
||||
# set the local_to_world transform
|
||||
self._set_local_to_world_transform(
|
||||
voxel_size=voxel_size, volume_translation=volume_translation
|
||||
)
|
||||
|
||||
def _convert_densities_features_to_tensor(
|
||||
self, x: _TensorBatch, var_name: str
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
) -> Tuple[torch.Tensor, torch.LongTensor]:
|
||||
"""
|
||||
Handle the `densities` or `features` arguments to the constructor.
|
||||
"""
|
||||
@ -251,8 +255,492 @@ class Volumes:
|
||||
f"{var_name} must be either a list or a tensor with "
|
||||
f"shape (batch_size, {var_name}_dim, H, W, D)."
|
||||
)
|
||||
# pyre-ignore[7]
|
||||
return x_tensor, x_shapes
|
||||
|
||||
def __len__(self) -> int:
|
||||
return self._densities.shape[0]
|
||||
|
||||
def __getitem__(
|
||||
self,
|
||||
index: Union[
|
||||
int, List[int], Tuple[int], slice, torch.BoolTensor, torch.LongTensor
|
||||
],
|
||||
) -> "Volumes":
|
||||
"""
|
||||
Args:
|
||||
index: Specifying the index of the volume to retrieve.
|
||||
Can be an int, slice, list of ints or a boolean or a long tensor.
|
||||
|
||||
Returns:
|
||||
Volumes object with selected volumes. The tensors are not cloned.
|
||||
"""
|
||||
if isinstance(index, int):
|
||||
index = torch.LongTensor([index])
|
||||
elif isinstance(index, (slice, list, tuple)):
|
||||
pass
|
||||
elif torch.is_tensor(index):
|
||||
if index.dim() != 1 or index.dtype.is_floating_point:
|
||||
raise IndexError(index)
|
||||
else:
|
||||
raise IndexError(index)
|
||||
|
||||
new = self.__class__(
|
||||
# pyre-fixme[16]: `Optional` has no attribute `__getitem__`.
|
||||
features=self.features()[index] if self._features is not None else None,
|
||||
densities=self.densities()[index],
|
||||
)
|
||||
# dont forget to update grid_sizes!
|
||||
self.locator._copy_transform_and_sizes(new.locator, index=index)
|
||||
return new
|
||||
|
||||
def features(self) -> Optional[torch.Tensor]:
|
||||
"""
|
||||
Returns the features of the volume.
|
||||
|
||||
Returns:
|
||||
**features**: The tensor of volume features.
|
||||
"""
|
||||
return self._features
|
||||
|
||||
def densities(self) -> torch.Tensor:
|
||||
"""
|
||||
Returns the densities of the volume.
|
||||
|
||||
Returns:
|
||||
**densities**: The tensor of volume densities.
|
||||
"""
|
||||
return self._densities
|
||||
|
||||
def densities_list(self) -> List[torch.Tensor]:
|
||||
"""
|
||||
Get the list representation of the densities.
|
||||
|
||||
Returns:
|
||||
list of tensors of densities of shape (dim_i, D_i, H_i, W_i).
|
||||
"""
|
||||
return self._features_densities_list(self.densities())
|
||||
|
||||
def features_list(self) -> List[torch.Tensor]:
|
||||
"""
|
||||
Get the list representation of the features.
|
||||
|
||||
Returns:
|
||||
list of tensors of features of shape (dim_i, D_i, H_i, W_i)
|
||||
or `None` for feature-less volumes.
|
||||
"""
|
||||
features_ = self.features()
|
||||
if features_ is None:
|
||||
# No features provided so return None
|
||||
# pyre-fixme[7]: Expected `List[torch.Tensor]` but got `None`.
|
||||
return None
|
||||
return self._features_densities_list(features_)
|
||||
|
||||
def _features_densities_list(self, x: torch.Tensor) -> List[torch.Tensor]:
|
||||
"""
|
||||
Retrieve the list representation of features/densities.
|
||||
|
||||
Args:
|
||||
x: self.features() or self.densities()
|
||||
|
||||
Returns:
|
||||
list of tensors of features/densities of shape (dim_i, D_i, H_i, W_i).
|
||||
"""
|
||||
x_dim = x.shape[1]
|
||||
pad_sizes = torch.nn.functional.pad(
|
||||
self.get_grid_sizes(), [1, 0], mode="constant", value=x_dim
|
||||
)
|
||||
x_list = struct_utils.padded_to_list(x, pad_sizes.tolist())
|
||||
return x_list
|
||||
|
||||
def update_padded(
|
||||
self, new_densities: torch.Tensor, new_features: Optional[torch.Tensor] = None
|
||||
) -> "Volumes":
|
||||
"""
|
||||
Returns a Volumes structure with updated padded tensors and copies of
|
||||
the auxiliary tensors `self._local_to_world_transform`,
|
||||
`device` and `self._grid_sizes`. This function allows for an update of
|
||||
densities (and features) without having to explicitly
|
||||
convert it to the list representation for heterogeneous batches.
|
||||
|
||||
Args:
|
||||
new_densities: FloatTensor of shape (N, dim_density, D, H, W)
|
||||
new_features: (optional) FloatTensor of shape (N, dim_feature, D, H, W)
|
||||
|
||||
Returns:
|
||||
Volumes with updated features and densities
|
||||
"""
|
||||
new = copy.copy(self)
|
||||
new._set_densities(new_densities)
|
||||
if new_features is None:
|
||||
new._features = None
|
||||
else:
|
||||
new._set_features(new_features)
|
||||
return new
|
||||
|
||||
def _set_features(self, features: _TensorBatch) -> None:
|
||||
self._set_densities_features("features", features)
|
||||
|
||||
def _set_densities(self, densities: _TensorBatch) -> None:
|
||||
self._set_densities_features("densities", densities)
|
||||
|
||||
def _set_densities_features(self, var_name: str, x: _TensorBatch) -> None:
|
||||
x_tensor, grid_sizes = self._convert_densities_features_to_tensor(x, var_name)
|
||||
if x_tensor.device != self.device:
|
||||
raise ValueError(
|
||||
f"`{var_name}` have to be on the same device as `self.densities`."
|
||||
)
|
||||
if len(x_tensor.shape) != 5:
|
||||
raise ValueError(
|
||||
f"{var_name} has to be a 5-dim tensor of shape: "
|
||||
f"(minibatch, {var_name}_dim, height, width, depth)"
|
||||
)
|
||||
|
||||
if not (
|
||||
(self.get_grid_sizes().shape == grid_sizes.shape)
|
||||
and torch.allclose(self.get_grid_sizes(), grid_sizes)
|
||||
):
|
||||
raise ValueError(
|
||||
f"The size of every grid in `{var_name}` has to match the size of"
|
||||
"the corresponding `densities` grid."
|
||||
)
|
||||
setattr(self, "_" + var_name, x_tensor)
|
||||
|
||||
def clone(self) -> "Volumes":
|
||||
"""
|
||||
Deep copy of Volumes object. All internal tensors are cloned
|
||||
individually.
|
||||
|
||||
Returns:
|
||||
new Volumes object.
|
||||
"""
|
||||
return copy.deepcopy(self)
|
||||
|
||||
def to(self, device: Device, copy: bool = False) -> "Volumes":
|
||||
"""
|
||||
Match the functionality of torch.Tensor.to()
|
||||
If copy = True or the self Tensor is on a different device, the
|
||||
returned tensor is a copy of self with the desired torch.device.
|
||||
If copy = False and the self Tensor already has the correct torch.device,
|
||||
then self is returned.
|
||||
|
||||
Args:
|
||||
device: Device (as str or torch.device) for the new tensor.
|
||||
copy: Boolean indicator whether or not to clone self. Default False.
|
||||
|
||||
Returns:
|
||||
Volumes object.
|
||||
"""
|
||||
device_ = make_device(device)
|
||||
if not copy and self.device == device_:
|
||||
return self
|
||||
|
||||
other = self.clone()
|
||||
if self.device == device_:
|
||||
return other
|
||||
|
||||
other.device = device_
|
||||
other._densities = self._densities.to(device_)
|
||||
if self._features is not None:
|
||||
# pyre-fixme[16]: `Optional` has no attribute `to`.
|
||||
other._features = self.features().to(device_)
|
||||
self.locator._copy_transform_and_sizes(other.locator, device=device_)
|
||||
other.locator = other.locator.to(device, copy)
|
||||
return other
|
||||
|
||||
def cpu(self) -> "Volumes":
|
||||
return self.to("cpu")
|
||||
|
||||
def cuda(self) -> "Volumes":
|
||||
return self.to("cuda")
|
||||
|
||||
def get_grid_sizes(self) -> torch.LongTensor:
|
||||
"""
|
||||
Returns the sizes of individual volumetric grids in the structure.
|
||||
|
||||
Returns:
|
||||
**grid_sizes**: Tensor of spatial sizes of each of the volumes
|
||||
of size (batchsize, 3), where i-th row holds (D_i, H_i, W_i).
|
||||
"""
|
||||
return self.locator.get_grid_sizes()
|
||||
|
||||
def get_local_to_world_coords_transform(self) -> Transform3d:
|
||||
"""
|
||||
Return a Transform3d object that converts points in the
|
||||
the local coordinate frame of the volume to world coordinates.
|
||||
Local volume coordinates are scaled s.t. the coordinates along one
|
||||
side of the volume are in range [-1, 1].
|
||||
|
||||
Returns:
|
||||
**local_to_world_transform**: A Transform3d object converting
|
||||
points from local coordinates to the world coordinates.
|
||||
"""
|
||||
return self.locator.get_local_to_world_coords_transform()
|
||||
|
||||
def get_world_to_local_coords_transform(self) -> Transform3d:
|
||||
"""
|
||||
Return a Transform3d object that converts points in the
|
||||
world coordinates to the local coordinate frame of the volume.
|
||||
Local volume coordinates are scaled s.t. the coordinates along one
|
||||
side of the volume are in range [-1, 1].
|
||||
|
||||
Returns:
|
||||
**world_to_local_transform**: A Transform3d object converting
|
||||
points from world coordinates to local coordinates.
|
||||
"""
|
||||
return self.get_local_to_world_coords_transform().inverse()
|
||||
|
||||
def world_to_local_coords(self, points_3d_world: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Convert a batch of 3D point coordinates `points_3d_world` of shape
|
||||
(minibatch, ..., dim) in the world coordinates to
|
||||
the local coordinate frame of the volume. Local volume
|
||||
coordinates are scaled s.t. the coordinates along one side of the volume
|
||||
are in range [-1, 1].
|
||||
|
||||
Args:
|
||||
**points_3d_world**: A tensor of shape `(minibatch, ..., 3)`
|
||||
containing the 3D coordinates of a set of points that will
|
||||
be converted from the local volume coordinates (ranging
|
||||
within [-1, 1]) to the world coordinates
|
||||
defined by the `self.center` and `self.voxel_size` parameters.
|
||||
|
||||
Returns:
|
||||
**points_3d_local**: `points_3d_world` converted to the local
|
||||
volume coordinates of shape `(minibatch, ..., 3)`.
|
||||
"""
|
||||
return self.locator.world_to_local_coords(points_3d_world)
|
||||
|
||||
def local_to_world_coords(self, points_3d_local: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Convert a batch of 3D point coordinates `points_3d_local` of shape
|
||||
(minibatch, ..., dim) in the local coordinate frame of the volume
|
||||
to the world coordinates.
|
||||
|
||||
Args:
|
||||
**points_3d_local**: A tensor of shape `(minibatch, ..., 3)`
|
||||
containing the 3D coordinates of a set of points that will
|
||||
be converted from the local volume coordinates (ranging
|
||||
within [-1, 1]) to the world coordinates
|
||||
defined by the `self.center` and `self.voxel_size` parameters.
|
||||
|
||||
Returns:
|
||||
**points_3d_world**: `points_3d_local` converted to the world
|
||||
coordinates of the volume of shape `(minibatch, ..., 3)`.
|
||||
"""
|
||||
return self.locator.local_to_world_coords(points_3d_local)
|
||||
|
||||
def get_coord_grid(self, world_coordinates: bool = True) -> torch.Tensor:
|
||||
"""
|
||||
Return the 3D coordinate grid of the volumetric grid
|
||||
in local (`world_coordinates=False`) or world coordinates
|
||||
(`world_coordinates=True`).
|
||||
|
||||
The grid records location of each center of the corresponding volume voxel.
|
||||
|
||||
Local coordinates are scaled s.t. the values along one side of the
|
||||
volume are in range [-1, 1].
|
||||
|
||||
Args:
|
||||
**world_coordinates**: if `True`, the method
|
||||
returns the grid in the world coordinates,
|
||||
otherwise, in local coordinates.
|
||||
|
||||
Returns:
|
||||
**coordinate_grid**: The grid of coordinates of shape
|
||||
`(minibatch, depth, height, width, 3)`, where `minibatch`,
|
||||
`height`, `width` and `depth` are the batch size, height, width
|
||||
and depth of the volume `features` or `densities`.
|
||||
"""
|
||||
return self.locator.get_coord_grid(world_coordinates)
|
||||
|
||||
|
||||
class VolumeLocator:
|
||||
"""
|
||||
The `VolumeLocator` class keeps track of the locations of the
|
||||
centers of the volume cells in the local volume coordinates as well as in
|
||||
the world coordinates for a voxel grid structure in 3D.
|
||||
|
||||
Local coordinates:
|
||||
- Represent the locations of the volume cells in the local coordinate
|
||||
frame of the volume.
|
||||
- The center of the voxel indexed with `[·, ·, 0, 0, 0]` in the volume
|
||||
has its 3D local coordinate set to `[-1, -1, -1]`, while the voxel
|
||||
at index `[·, ·, depth_i-1, height_i-1, width_i-1]` has its
|
||||
3D local coordinate set to `[1, 1, 1]`.
|
||||
- The first/second/third coordinate of each of the 3D per-voxel
|
||||
XYZ vector denotes the horizontal/vertical/depth-wise position
|
||||
respectively. I.e the order of the coordinate dimensions in the
|
||||
volume is reversed w.r.t. the order of the 3D coordinate vectors.
|
||||
- The intermediate coordinates between `[-1, -1, -1]` and `[1, 1, 1]`.
|
||||
are linearly interpolated over the spatial dimensions of the volume.
|
||||
- Note that the convention is the same as for the 5D version of the
|
||||
`torch.nn.functional.grid_sample` function called with
|
||||
`align_corners==True`.
|
||||
- Note that the local coordinate convention of `VolumeLocator`
|
||||
(+X = left to right, +Y = top to bottom, +Z = away from the user)
|
||||
is *different* from the world coordinate convention of the
|
||||
renderer for `Meshes` or `Pointclouds`
|
||||
(+X = right to left, +Y = bottom to top, +Z = away from the user).
|
||||
|
||||
World coordinates:
|
||||
- These define the locations of the centers of the volume cells
|
||||
in the world coordinates.
|
||||
- They are specified with the following mapping that converts
|
||||
points `x_local` in the local coordinates to points `x_world`
|
||||
in the world coordinates:
|
||||
```
|
||||
x_world = (
|
||||
x_local * (volume_size - 1) * 0.5 * voxel_size
|
||||
) - volume_translation,
|
||||
```
|
||||
here `voxel_size` specifies the size of each voxel of the volume,
|
||||
and `volume_translation` is the 3D offset of the central voxel of
|
||||
the volume w.r.t. the origin of the world coordinate frame.
|
||||
Both `voxel_size` and `volume_translation` are specified in
|
||||
the world coordinate units. `volume_size` is the spatial size of
|
||||
the volume in form of a 3D vector `[width, height, depth]`.
|
||||
- Given the above definition of `x_world`, one can derive the
|
||||
inverse mapping from `x_world` to `x_local` as follows:
|
||||
```
|
||||
x_local = (
|
||||
(x_world + volume_translation) / (0.5 * voxel_size)
|
||||
) / (volume_size - 1)
|
||||
```
|
||||
- For a trivial volume with `volume_translation==[0, 0, 0]`
|
||||
with `voxel_size=-1`, `x_world` would range
|
||||
from -(volume_size-1)/2` to `+(volume_size-1)/2`.
|
||||
|
||||
Coordinate tensors that denote the locations of each of the volume cells in
|
||||
local / world coordinates (with shape `(depth x height x width x 3)`)
|
||||
can be retrieved by calling the `VolumeLocator.get_coord_grid()` getter with the
|
||||
appropriate `world_coordinates` argument.
|
||||
|
||||
Internally, the mapping between `x_local` and `x_world` is represented
|
||||
as a `Transform3d` object `VolumeLocator._local_to_world_transform`.
|
||||
Users can access the relevant transformations with the
|
||||
`VolumeLocator.get_world_to_local_coords_transform()` and
|
||||
`VolumeLocator.get_local_to_world_coords_transform()`
|
||||
functions.
|
||||
|
||||
Example coordinate conversion:
|
||||
- For a "trivial" volume with `voxel_size = 1.`,
|
||||
`volume_translation=[0., 0., 0.]`, and the spatial size of
|
||||
`DxHxW = 5x5x5`, the point `x_world = (-2, 0, 2)` gets mapped
|
||||
to `x_local=(-1, 0, 1)`.
|
||||
- For a "trivial" volume `v` with `voxel_size = 1.`,
|
||||
`volume_translation=[0., 0., 0.]`, the following holds:
|
||||
```
|
||||
torch.nn.functional.grid_sample(
|
||||
v.densities(),
|
||||
v.get_coord_grid(world_coordinates=False),
|
||||
align_corners=True,
|
||||
) == v.densities(),
|
||||
```
|
||||
i.e. sampling the volume at trivial local coordinates
|
||||
(no scaling with `voxel_size`` or shift with `volume_translation`)
|
||||
results in the same volume.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
batch_size: int,
|
||||
grid_sizes: Union[
|
||||
torch.LongTensor, Tuple[int, int, int], List[torch.LongTensor]
|
||||
],
|
||||
device: torch.device,
|
||||
voxel_size: _VoxelSize = 1.0,
|
||||
volume_translation: _Translation = (0.0, 0.0, 0.0),
|
||||
):
|
||||
"""
|
||||
**batch_size** : Batch size of the underlaying grids
|
||||
**grid_sizes** : Represents the resolutions of different grids in the batch. Can be
|
||||
a) tuple of form (H, W, D)
|
||||
b) list/tuple of length batch_size of lists/tuples of form (H, W, D)
|
||||
c) torch.Tensor of shape (batch_size, H, W, D)
|
||||
H, W, D are height, width, depth respectively. If `grid_sizes` is a tuple than
|
||||
all the grids in the batch have the same resolution.
|
||||
**voxel_size**: Denotes the size of each volume voxel in world units.
|
||||
Has to be one of:
|
||||
a) A scalar (square voxels)
|
||||
b) 3-tuple or a 3-list of scalars
|
||||
c) a Tensor of shape (3,)
|
||||
d) a Tensor of shape (minibatch, 3)
|
||||
e) a Tensor of shape (minibatch, 1)
|
||||
f) a Tensor of shape (1,) (square voxels)
|
||||
**volume_translation**: Denotes the 3D translation of the center
|
||||
of the volume in world units. Has to be one of:
|
||||
a) 3-tuple or a 3-list of scalars
|
||||
b) a Tensor of shape (3,)
|
||||
c) a Tensor of shape (minibatch, 3)
|
||||
d) a Tensor of shape (1,) (square voxels)
|
||||
"""
|
||||
self.device = device
|
||||
self._batch_size = batch_size
|
||||
self._grid_sizes = self._convert_grid_sizes2tensor(grid_sizes)
|
||||
self._resolution = tuple(torch.max(self._grid_sizes.cpu(), dim=0).values)
|
||||
|
||||
# set the local_to_world transform
|
||||
self._set_local_to_world_transform(
|
||||
voxel_size=voxel_size, volume_translation=volume_translation
|
||||
)
|
||||
|
||||
def _convert_grid_sizes2tensor(
|
||||
self, x: Union[torch.LongTensor, List[torch.LongTensor], Tuple[int, int, int]]
|
||||
) -> torch.LongTensor:
|
||||
"""
|
||||
Handle the grid_sizes argument to the constructor.
|
||||
"""
|
||||
if isinstance(x, (list, tuple)):
|
||||
if isinstance(x[0], (torch.LongTensor, list, tuple)):
|
||||
if self._batch_size != len(x):
|
||||
raise ValueError("x should have a batch size of 'batch_size'")
|
||||
# pyre-ignore[6]
|
||||
if any(len(x_) != 3 for x_ in x):
|
||||
raise ValueError(
|
||||
"`grid_sizes` has to be a list of 3-dim tensors of shape: "
|
||||
"(height, width, depth)"
|
||||
)
|
||||
x_shapes = torch.stack(
|
||||
[
|
||||
torch.tensor(
|
||||
# pyre-ignore[6]
|
||||
list(x_),
|
||||
dtype=torch.long,
|
||||
device=self.device,
|
||||
)
|
||||
for x_ in x
|
||||
],
|
||||
dim=0,
|
||||
)
|
||||
elif isinstance(x[0], int):
|
||||
x_shapes = torch.stack(
|
||||
[
|
||||
torch.tensor(list(x), dtype=torch.long, device=self.device)
|
||||
for _ in range(self._batch_size)
|
||||
],
|
||||
dim=0,
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
"`grid_sizes` can be a list/tuple of int or torch.Tensor not of "
|
||||
+ "{type(x[0])}."
|
||||
)
|
||||
|
||||
elif torch.is_tensor(x):
|
||||
if x.ndim != 2:
|
||||
raise ValueError(
|
||||
"`grid_sizes` has to be a 2-dim tensor of shape: (minibatch, 3)"
|
||||
)
|
||||
x_shapes = x.to(self.device)
|
||||
else:
|
||||
raise ValueError(
|
||||
"grid_sizes must be either a list of tensors with shape (H, W, D), tensor with"
|
||||
"shape (batch_size, H, W, D) or a tuple of (H, W, D)."
|
||||
)
|
||||
# pyre-ignore[7]
|
||||
return x_shapes
|
||||
|
||||
def _voxel_size_translation_to_transform(
|
||||
self,
|
||||
voxel_size: torch.Tensor,
|
||||
@ -280,75 +768,6 @@ class Volumes:
|
||||
|
||||
return local_to_world_transform
|
||||
|
||||
def _handle_voxel_size(
|
||||
self, voxel_size: _VoxelSize, batch_size: int
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Handle the `voxel_size` argument to the `Volumes` constructor.
|
||||
"""
|
||||
err_msg = (
|
||||
"voxel_size has to be either a 3-tuple of scalars, or a scalar, or"
|
||||
" a torch.Tensor of shape (3,) or (1,) or (minibatch, 3) or (minibatch, 1)."
|
||||
)
|
||||
if isinstance(voxel_size, (float, int)):
|
||||
# convert a scalar to a 3-element tensor
|
||||
voxel_size = torch.full(
|
||||
(1, 3), voxel_size, device=self.device, dtype=torch.float32
|
||||
)
|
||||
elif isinstance(voxel_size, torch.Tensor):
|
||||
if voxel_size.numel() == 1:
|
||||
# convert a single-element tensor to a 3-element one
|
||||
voxel_size = voxel_size.view(-1).repeat(3)
|
||||
elif len(voxel_size.shape) == 2 and (
|
||||
voxel_size.shape[0] == batch_size and voxel_size.shape[1] == 1
|
||||
):
|
||||
voxel_size = voxel_size.repeat(1, 3)
|
||||
return self._convert_volume_property_to_tensor(voxel_size, batch_size, err_msg)
|
||||
|
||||
def _handle_volume_translation(
|
||||
self, translation: _Translation, batch_size: int
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Handle the `volume_translation` argument to the `Volumes` constructor.
|
||||
"""
|
||||
err_msg = (
|
||||
"`volume_translation` has to be either a 3-tuple of scalars, or"
|
||||
" a Tensor of shape (1,3) or (minibatch, 3) or (3,)`."
|
||||
)
|
||||
return self._convert_volume_property_to_tensor(translation, batch_size, err_msg)
|
||||
|
||||
def _convert_volume_property_to_tensor(
|
||||
self, x: _Vector, batch_size: int, err_msg: str
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Handle the `volume_translation` or `voxel_size` argument to
|
||||
the Volumes constructor.
|
||||
Return a tensor of shape (N, 3) where N is the batch_size.
|
||||
"""
|
||||
if isinstance(x, (list, tuple)):
|
||||
if len(x) != 3:
|
||||
raise ValueError(err_msg)
|
||||
x = torch.tensor(x, device=self.device, dtype=torch.float32)[None]
|
||||
x = x.repeat((batch_size, 1))
|
||||
elif isinstance(x, torch.Tensor):
|
||||
ok = (
|
||||
(x.shape[0] == 1 and x.shape[1] == 3)
|
||||
or (x.shape[0] == 3 and len(x.shape) == 1)
|
||||
or (x.shape[0] == batch_size and x.shape[1] == 3)
|
||||
)
|
||||
if not ok:
|
||||
raise ValueError(err_msg)
|
||||
if x.device != self.device:
|
||||
x = x.to(self.device)
|
||||
if x.shape[0] == 3 and len(x.shape) == 1:
|
||||
x = x[None]
|
||||
if x.shape[0] == 1:
|
||||
x = x.repeat((batch_size, 1))
|
||||
else:
|
||||
raise ValueError(err_msg)
|
||||
|
||||
return x
|
||||
|
||||
def get_coord_grid(self, world_coordinates: bool = True) -> torch.Tensor:
|
||||
"""
|
||||
Return the 3D coordinate grid of the volumetric grid
|
||||
@ -378,13 +797,12 @@ class Volumes:
|
||||
self, world_coordinates: bool = True
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Calculate the 3D coordinate grid of the volumetric grid either in
|
||||
Calculate the 3D coordinate grid of the volumetric grid either
|
||||
in local (`world_coordinates=False`) or
|
||||
world coordinates (`world_coordinates=True`) .
|
||||
"""
|
||||
|
||||
densities = self.densities()
|
||||
ba, _, de, he, wi = densities.shape
|
||||
ba, (de, he, wi) = self._batch_size, self._resolution
|
||||
grid_sizes = self.get_grid_sizes()
|
||||
|
||||
# generate coordinate axes
|
||||
@ -497,102 +915,6 @@ class Volumes:
|
||||
.view(pts_shape)
|
||||
)
|
||||
|
||||
def __len__(self) -> int:
|
||||
return self._densities.shape[0]
|
||||
|
||||
def __getitem__(
|
||||
self,
|
||||
index: Union[
|
||||
int, List[int], Tuple[int], slice, torch.BoolTensor, torch.LongTensor
|
||||
],
|
||||
) -> "Volumes":
|
||||
"""
|
||||
Args:
|
||||
index: Specifying the index of the volume to retrieve.
|
||||
Can be an int, slice, list of ints or a boolean or a long tensor.
|
||||
|
||||
Returns:
|
||||
Volumes object with selected volumes. The tensors are not cloned.
|
||||
"""
|
||||
if isinstance(index, int):
|
||||
index = torch.LongTensor([index])
|
||||
elif isinstance(index, (slice, list, tuple)):
|
||||
pass
|
||||
elif torch.is_tensor(index):
|
||||
if index.dim() != 1 or index.dtype.is_floating_point:
|
||||
raise IndexError(index)
|
||||
else:
|
||||
raise IndexError(index)
|
||||
|
||||
new = self.__class__(
|
||||
# pyre-fixme[16]: `Optional` has no attribute `__getitem__`.
|
||||
features=self.features()[index] if self._features is not None else None,
|
||||
densities=self.densities()[index],
|
||||
)
|
||||
# dont forget to update grid_sizes!
|
||||
new._grid_sizes = self.get_grid_sizes()[index]
|
||||
new._local_to_world_transform = self._local_to_world_transform[index]
|
||||
return new
|
||||
|
||||
def features(self) -> Optional[torch.Tensor]:
|
||||
"""
|
||||
Returns the features of the volume.
|
||||
|
||||
Returns:
|
||||
**features**: The tensor of volume features.
|
||||
"""
|
||||
return self._features
|
||||
|
||||
def densities(self) -> torch.Tensor:
|
||||
"""
|
||||
Returns the densities of the volume.
|
||||
|
||||
Returns:
|
||||
**densities**: The tensor of volume densities.
|
||||
"""
|
||||
return self._densities
|
||||
|
||||
def densities_list(self) -> List[torch.Tensor]:
|
||||
"""
|
||||
Get the list representation of the densities.
|
||||
|
||||
Returns:
|
||||
list of tensors of densities of shape (dim_i, D_i, H_i, W_i).
|
||||
"""
|
||||
return self._features_densities_list(self.densities())
|
||||
|
||||
def features_list(self) -> List[torch.Tensor]:
|
||||
"""
|
||||
Get the list representation of the features.
|
||||
|
||||
Returns:
|
||||
list of tensors of features of shape (dim_i, D_i, H_i, W_i)
|
||||
or `None` for feature-less volumes.
|
||||
"""
|
||||
features_ = self.features()
|
||||
if features_ is None:
|
||||
# No features provided so return None
|
||||
# pyre-fixme[7]: Expected `List[torch.Tensor]` but got `None`.
|
||||
return None
|
||||
return self._features_densities_list(features_)
|
||||
|
||||
def _features_densities_list(self, x: torch.Tensor) -> List[torch.Tensor]:
|
||||
"""
|
||||
Retrieve the list representation of features/densities.
|
||||
|
||||
Args:
|
||||
x: self.features() or self.densities()
|
||||
|
||||
Returns:
|
||||
list of tensors of features/densities of shape (dim_i, D_i, H_i, W_i).
|
||||
"""
|
||||
x_dim = x.shape[1]
|
||||
pad_sizes = torch.nn.functional.pad(
|
||||
self.get_grid_sizes(), [1, 0], mode="constant", value=x_dim
|
||||
)
|
||||
x_list = struct_utils.padded_to_list(x, pad_sizes.tolist())
|
||||
return x_list
|
||||
|
||||
def get_grid_sizes(self) -> torch.LongTensor:
|
||||
"""
|
||||
Returns the sizes of individual volumetric grids in the structure.
|
||||
@ -603,59 +925,6 @@ class Volumes:
|
||||
"""
|
||||
return self._grid_sizes
|
||||
|
||||
def update_padded(
|
||||
self, new_densities: torch.Tensor, new_features: Optional[torch.Tensor] = None
|
||||
) -> "Volumes":
|
||||
"""
|
||||
Returns a Volumes structure with updated padded tensors and copies of
|
||||
the auxiliary tensors `self._local_to_world_transform`,
|
||||
`device` and `self._grid_sizes`. This function allows for an update of
|
||||
densities (and features) without having to explicitly
|
||||
convert it to the list representation for heterogeneous batches.
|
||||
|
||||
Args:
|
||||
new_densities: FloatTensor of shape (N, dim_density, D, H, W)
|
||||
new_features: (optional) FloatTensor of shape (N, dim_feature, D, H, W)
|
||||
|
||||
Returns:
|
||||
Volumes with updated features and densities
|
||||
"""
|
||||
new = copy.copy(self)
|
||||
new._set_densities(new_densities)
|
||||
if new_features is None:
|
||||
new._features = None
|
||||
else:
|
||||
new._set_features(new_features)
|
||||
return new
|
||||
|
||||
def _set_features(self, features: _TensorBatch) -> None:
|
||||
self._set_densities_features("features", features)
|
||||
|
||||
def _set_densities(self, densities: _TensorBatch) -> None:
|
||||
self._set_densities_features("densities", densities)
|
||||
|
||||
def _set_densities_features(self, var_name: str, x: _TensorBatch) -> None:
|
||||
x_tensor, grid_sizes = self._convert_densities_features_to_tensor(x, var_name)
|
||||
if x_tensor.device != self.device:
|
||||
raise ValueError(
|
||||
f"`{var_name}` have to be on the same device as `self.densities`."
|
||||
)
|
||||
if len(x_tensor.shape) != 5:
|
||||
raise ValueError(
|
||||
f"{var_name} has to be a 5-dim tensor of shape: "
|
||||
f"(minibatch, {var_name}_dim, height, width, depth)"
|
||||
)
|
||||
|
||||
if not (
|
||||
(self.get_grid_sizes().shape == grid_sizes.shape)
|
||||
and torch.allclose(self.get_grid_sizes(), grid_sizes)
|
||||
):
|
||||
raise ValueError(
|
||||
f"The size of every grid in `{var_name}` has to match the size of"
|
||||
"the corresponding `densities` grid."
|
||||
)
|
||||
setattr(self, "_" + var_name, x_tensor)
|
||||
|
||||
def _set_local_to_world_transform(
|
||||
self,
|
||||
voxel_size: _VoxelSize = 1.0,
|
||||
@ -690,17 +959,104 @@ class Volumes:
|
||||
voxel_size, volume_translation, len(self)
|
||||
)
|
||||
|
||||
def clone(self) -> "Volumes":
|
||||
def _copy_transform_and_sizes(
|
||||
self,
|
||||
other: "VolumeLocator",
|
||||
device: Optional[torch.device] = None,
|
||||
index: Optional[
|
||||
Union[int, List[int], Tuple[int], slice, torch.Tensor]
|
||||
] = _ALL_CONTENT,
|
||||
) -> None:
|
||||
"""
|
||||
Deep copy of Volumes object. All internal tensors are cloned
|
||||
individually.
|
||||
Copies the local to world transform and grid sizes to other VolumeLocator object
|
||||
and moves it to specified device. Operates in place on other.
|
||||
|
||||
Returns:
|
||||
new Volumes object.
|
||||
Args:
|
||||
other: VolumeLocator object to which to copy
|
||||
device: torch.device on which to put the result, defatults to self.device
|
||||
index: Specifies which parts to copy.
|
||||
Can be an int, slice, list of ints or a boolean or a long tensor.
|
||||
Defaults to all items (`:`).
|
||||
"""
|
||||
return copy.deepcopy(self)
|
||||
device = device if device is not None else self.device
|
||||
other._grid_sizes = self._grid_sizes[index].to(device)
|
||||
other._local_to_world_transform = self.get_local_to_world_coords_transform()[
|
||||
index
|
||||
].to(device)
|
||||
|
||||
def to(self, device: Device, copy: bool = False) -> "Volumes":
|
||||
def _handle_voxel_size(
|
||||
self, voxel_size: _VoxelSize, batch_size: int
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Handle the `voxel_size` argument to the `VolumeLocator` constructor.
|
||||
"""
|
||||
err_msg = (
|
||||
"voxel_size has to be either a 3-tuple of scalars, or a scalar, or"
|
||||
" a torch.Tensor of shape (3,) or (1,) or (minibatch, 3) or (minibatch, 1)."
|
||||
)
|
||||
if isinstance(voxel_size, (float, int)):
|
||||
# convert a scalar to a 3-element tensor
|
||||
voxel_size = torch.full(
|
||||
(1, 3), voxel_size, device=self.device, dtype=torch.float32
|
||||
)
|
||||
elif isinstance(voxel_size, torch.Tensor):
|
||||
if voxel_size.numel() == 1:
|
||||
# convert a single-element tensor to a 3-element one
|
||||
voxel_size = voxel_size.view(-1).repeat(3)
|
||||
elif len(voxel_size.shape) == 2 and (
|
||||
voxel_size.shape[0] == batch_size and voxel_size.shape[1] == 1
|
||||
):
|
||||
voxel_size = voxel_size.repeat(1, 3)
|
||||
return self._convert_volume_property_to_tensor(voxel_size, batch_size, err_msg)
|
||||
|
||||
def _handle_volume_translation(
|
||||
self, translation: _Translation, batch_size: int
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Handle the `volume_translation` argument to the `VolumeLocator` constructor.
|
||||
"""
|
||||
err_msg = (
|
||||
"`volume_translation` has to be either a 3-tuple of scalars, or"
|
||||
" a Tensor of shape (1,3) or (minibatch, 3) or (3,)`."
|
||||
)
|
||||
return self._convert_volume_property_to_tensor(translation, batch_size, err_msg)
|
||||
|
||||
def __len__(self) -> int:
|
||||
return self._batch_size
|
||||
|
||||
def _convert_volume_property_to_tensor(
|
||||
self, x: _Vector, batch_size: int, err_msg: str
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Handle the `volume_translation` or `voxel_size` argument to
|
||||
the VolumeLocator constructor.
|
||||
Return a tensor of shape (N, 3) where N is the batch_size.
|
||||
"""
|
||||
if isinstance(x, (list, tuple)):
|
||||
if len(x) != 3:
|
||||
raise ValueError(err_msg)
|
||||
x = torch.tensor(x, device=self.device, dtype=torch.float32)[None]
|
||||
x = x.repeat((batch_size, 1))
|
||||
elif isinstance(x, torch.Tensor):
|
||||
ok = (
|
||||
(x.shape[0] == 1 and x.shape[1] == 3)
|
||||
or (x.shape[0] == 3 and len(x.shape) == 1)
|
||||
or (x.shape[0] == batch_size and x.shape[1] == 3)
|
||||
)
|
||||
if not ok:
|
||||
raise ValueError(err_msg)
|
||||
if x.device != self.device:
|
||||
x = x.to(self.device)
|
||||
if x.shape[0] == 3 and len(x.shape) == 1:
|
||||
x = x[None]
|
||||
if x.shape[0] == 1:
|
||||
x = x.repeat((batch_size, 1))
|
||||
else:
|
||||
raise ValueError(err_msg)
|
||||
|
||||
return x
|
||||
|
||||
def to(self, device: Device, copy: bool = False) -> "VolumeLocator":
|
||||
"""
|
||||
Match the functionality of torch.Tensor.to()
|
||||
If copy = True or the self Tensor is on a different device, the
|
||||
@ -713,7 +1069,7 @@ class Volumes:
|
||||
copy: Boolean indicator whether or not to clone self. Default False.
|
||||
|
||||
Returns:
|
||||
Volumes object.
|
||||
VolumeLocator object.
|
||||
"""
|
||||
device_ = make_device(device)
|
||||
if not copy and self.device == device_:
|
||||
@ -724,18 +1080,24 @@ class Volumes:
|
||||
return other
|
||||
|
||||
other.device = device_
|
||||
other._densities = self._densities.to(device_)
|
||||
if self._features is not None:
|
||||
# pyre-fixme[16]: `Optional` has no attribute `to`.
|
||||
other._features = self.features().to(device_)
|
||||
other._local_to_world_transform = self.get_local_to_world_coords_transform().to(
|
||||
device_
|
||||
)
|
||||
other._grid_sizes = self._grid_sizes.to(device_)
|
||||
other._local_to_world_transform = self.get_local_to_world_coords_transform().to(
|
||||
device
|
||||
)
|
||||
return other
|
||||
|
||||
def cpu(self) -> "Volumes":
|
||||
def clone(self) -> "VolumeLocator":
|
||||
"""
|
||||
Deep copy of VoluVolumeLocatormes object. All internal tensors are cloned
|
||||
individually.
|
||||
|
||||
Returns:
|
||||
new VolumeLocator object.
|
||||
"""
|
||||
return copy.deepcopy(self)
|
||||
|
||||
def cpu(self) -> "VolumeLocator":
|
||||
return self.to("cpu")
|
||||
|
||||
def cuda(self) -> "Volumes":
|
||||
def cuda(self) -> "VolumeLocator":
|
||||
return self.to("cuda")
|
||||
|
@ -11,7 +11,7 @@ import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from pytorch3d.structures.volumes import Volumes
|
||||
from pytorch3d.structures.volumes import VolumeLocator, Volumes
|
||||
from pytorch3d.transforms import Scale
|
||||
|
||||
from .common_testing import TestCaseMixin
|
||||
@ -53,8 +53,8 @@ class TestVolumes(TestCaseMixin, unittest.TestCase):
|
||||
for selectedIdx, index in indices:
|
||||
self.assertClose(selected.densities()[selectedIdx], v.densities()[index])
|
||||
self.assertClose(
|
||||
v._local_to_world_transform.get_matrix()[index],
|
||||
selected._local_to_world_transform.get_matrix()[selectedIdx],
|
||||
v.locator._local_to_world_transform.get_matrix()[index],
|
||||
selected.locator._local_to_world_transform.get_matrix()[selectedIdx],
|
||||
)
|
||||
if selected.features() is not None:
|
||||
self.assertClose(selected.features()[selectedIdx], v.features()[index])
|
||||
@ -149,10 +149,55 @@ class TestVolumes(TestCaseMixin, unittest.TestCase):
|
||||
with self.assertRaises(IndexError):
|
||||
v_selected = v[index]
|
||||
|
||||
def test_locator_init(self, batch_size=9, resolution=(3, 5, 7)):
|
||||
with self.subTest("VolumeLocator init with all sizes equal"):
|
||||
grid_sizes = [resolution for _ in range(batch_size)]
|
||||
locator_tuple = VolumeLocator(
|
||||
batch_size=batch_size, grid_sizes=resolution, device=torch.device("cpu")
|
||||
)
|
||||
locator_list = VolumeLocator(
|
||||
batch_size=batch_size, grid_sizes=grid_sizes, device=torch.device("cpu")
|
||||
)
|
||||
locator_tensor = VolumeLocator(
|
||||
batch_size=batch_size,
|
||||
grid_sizes=torch.tensor(grid_sizes),
|
||||
device=torch.device("cpu"),
|
||||
)
|
||||
expected_grid_sizes = torch.tensor(grid_sizes)
|
||||
expected_resolution = resolution
|
||||
assert torch.allclose(expected_grid_sizes, locator_tuple._grid_sizes)
|
||||
assert torch.allclose(expected_grid_sizes, locator_list._grid_sizes)
|
||||
assert torch.allclose(expected_grid_sizes, locator_tensor._grid_sizes)
|
||||
self.assertEqual(expected_resolution, locator_tuple._resolution)
|
||||
self.assertEqual(expected_resolution, locator_list._resolution)
|
||||
self.assertEqual(expected_resolution, locator_tensor._resolution)
|
||||
|
||||
with self.subTest("VolumeLocator with different sizes in different grids"):
|
||||
grid_sizes_list = [
|
||||
torch.randint(low=1, high=42, size=(3,)) for _ in range(batch_size)
|
||||
]
|
||||
grid_sizes_tensor = torch.cat([el[None] for el in grid_sizes_list])
|
||||
locator_list = VolumeLocator(
|
||||
batch_size=batch_size,
|
||||
grid_sizes=grid_sizes_list,
|
||||
device=torch.device("cpu"),
|
||||
)
|
||||
locator_tensor = VolumeLocator(
|
||||
batch_size=batch_size,
|
||||
grid_sizes=grid_sizes_tensor,
|
||||
device=torch.device("cpu"),
|
||||
)
|
||||
expected_grid_sizes = grid_sizes_tensor
|
||||
expected_resolution = tuple(torch.max(expected_grid_sizes, dim=0).values)
|
||||
assert torch.allclose(expected_grid_sizes, locator_list._grid_sizes)
|
||||
assert torch.allclose(expected_grid_sizes, locator_tensor._grid_sizes)
|
||||
self.assertEqual(expected_resolution, locator_list._resolution)
|
||||
self.assertEqual(expected_resolution, locator_tensor._resolution)
|
||||
|
||||
def test_coord_transforms(self, num_volumes=3, num_channels=4, dtype=torch.float32):
|
||||
"""
|
||||
Test the correctness of the conversion between the internal
|
||||
Transform3D Volumes._local_to_world_transform and the initialization
|
||||
Transform3D Volumes.VolumeLocator._local_to_world_transform and the initialization
|
||||
from the translation and voxel_size.
|
||||
"""
|
||||
|
||||
@ -440,7 +485,10 @@ class TestVolumes(TestCaseMixin, unittest.TestCase):
|
||||
for var_name, var in vars(v).items():
|
||||
if var_name != "device":
|
||||
if var is not None:
|
||||
self.assertTrue(var.device.type == desired_device.type)
|
||||
self.assertTrue(
|
||||
var.device.type == desired_device.type,
|
||||
(var_name, var.device, desired_device),
|
||||
)
|
||||
else:
|
||||
self.assertTrue(var.type == desired_device.type)
|
||||
|
||||
@ -456,60 +504,74 @@ class TestVolumes(TestCaseMixin, unittest.TestCase):
|
||||
)
|
||||
densities = torch.rand(size=[num_volumes, 1, *size], dtype=dtype)
|
||||
volumes = Volumes(densities=densities, features=features)
|
||||
locator = VolumeLocator(
|
||||
batch_size=5, grid_sizes=(3, 5, 7), device=volumes.device
|
||||
)
|
||||
|
||||
# Test support for str and torch.device
|
||||
cpu_device = torch.device("cpu")
|
||||
for name, obj in (("VolumeLocator", locator), ("Volumes", volumes)):
|
||||
with self.subTest(f"Moving {name} from/to gpu and cpu"):
|
||||
# Test support for str and torch.device
|
||||
cpu_device = torch.device("cpu")
|
||||
|
||||
converted_volumes = volumes.to("cpu")
|
||||
self.assertEqual(cpu_device, converted_volumes.device)
|
||||
self.assertEqual(cpu_device, volumes.device)
|
||||
self.assertIs(volumes, converted_volumes)
|
||||
converted_obj = obj.to("cpu")
|
||||
self.assertEqual(cpu_device, converted_obj.device)
|
||||
self.assertEqual(cpu_device, obj.device)
|
||||
self.assertIs(obj, converted_obj)
|
||||
|
||||
converted_volumes = volumes.to(cpu_device)
|
||||
self.assertEqual(cpu_device, converted_volumes.device)
|
||||
self.assertEqual(cpu_device, volumes.device)
|
||||
self.assertIs(volumes, converted_volumes)
|
||||
converted_obj = obj.to(cpu_device)
|
||||
self.assertEqual(cpu_device, converted_obj.device)
|
||||
self.assertEqual(cpu_device, obj.device)
|
||||
self.assertIs(obj, converted_obj)
|
||||
|
||||
cuda_device = torch.device("cuda:0")
|
||||
cuda_device = torch.device("cuda:0")
|
||||
|
||||
converted_volumes = volumes.to("cuda:0")
|
||||
self.assertEqual(cuda_device, converted_volumes.device)
|
||||
self.assertEqual(cpu_device, volumes.device)
|
||||
self.assertIsNot(volumes, converted_volumes)
|
||||
converted_obj = obj.to("cuda:0")
|
||||
self.assertEqual(cuda_device, converted_obj.device)
|
||||
self.assertEqual(cpu_device, obj.device)
|
||||
self.assertIsNot(obj, converted_obj)
|
||||
|
||||
converted_volumes = volumes.to(cuda_device)
|
||||
self.assertEqual(cuda_device, converted_volumes.device)
|
||||
self.assertEqual(cpu_device, volumes.device)
|
||||
self.assertIsNot(volumes, converted_volumes)
|
||||
converted_obj = obj.to(cuda_device)
|
||||
self.assertEqual(cuda_device, converted_obj.device)
|
||||
self.assertEqual(cpu_device, obj.device)
|
||||
self.assertIsNot(obj, converted_obj)
|
||||
|
||||
# Test device placement of internal tensors
|
||||
features = features.to(cuda_device)
|
||||
densities = features.to(cuda_device)
|
||||
with self.subTest("Test device placement of internal tensors of Volumes"):
|
||||
features = features.to(cuda_device)
|
||||
densities = features.to(cuda_device)
|
||||
|
||||
for features_ in (features, None):
|
||||
volumes = Volumes(densities=densities, features=features_)
|
||||
for features_ in (features, None):
|
||||
volumes = Volumes(densities=densities, features=features_)
|
||||
|
||||
cpu_volumes = volumes.cpu()
|
||||
cuda_volumes = cpu_volumes.cuda()
|
||||
cuda_volumes2 = cuda_volumes.cuda()
|
||||
cpu_volumes2 = cuda_volumes2.cpu()
|
||||
cpu_volumes = volumes.cpu()
|
||||
cuda_volumes = cpu_volumes.cuda()
|
||||
cuda_volumes2 = cuda_volumes.cuda()
|
||||
cpu_volumes2 = cuda_volumes2.cpu()
|
||||
|
||||
for volumes1, volumes2 in itertools.combinations(
|
||||
(volumes, cpu_volumes, cpu_volumes2, cuda_volumes, cuda_volumes2), 2
|
||||
):
|
||||
if volumes1 is cuda_volumes and volumes2 is cuda_volumes2:
|
||||
# checks that we do not copy if the devices stay the same
|
||||
assert_fun = self.assertIs
|
||||
else:
|
||||
assert_fun = self.assertSeparate
|
||||
assert_fun(volumes1._densities, volumes2._densities)
|
||||
if features_ is not None:
|
||||
assert_fun(volumes1._features, volumes2._features)
|
||||
for volumes_ in (volumes1, volumes2):
|
||||
if volumes_ in (cpu_volumes, cpu_volumes2):
|
||||
self._check_vars_on_device(volumes_, cpu_device)
|
||||
for volumes1, volumes2 in itertools.combinations(
|
||||
(volumes, cpu_volumes, cpu_volumes2, cuda_volumes, cuda_volumes2), 2
|
||||
):
|
||||
if volumes1 is cuda_volumes and volumes2 is cuda_volumes2:
|
||||
# checks that we do not copy if the devices stay the same
|
||||
assert_fun = self.assertIs
|
||||
else:
|
||||
self._check_vars_on_device(volumes_, cuda_device)
|
||||
assert_fun = self.assertSeparate
|
||||
assert_fun(volumes1._densities, volumes2._densities)
|
||||
if features_ is not None:
|
||||
assert_fun(volumes1._features, volumes2._features)
|
||||
for volumes_ in (volumes1, volumes2):
|
||||
if volumes_ in (cpu_volumes, cpu_volumes2):
|
||||
self._check_vars_on_device(volumes_, cpu_device)
|
||||
else:
|
||||
self._check_vars_on_device(volumes_, cuda_device)
|
||||
|
||||
with self.subTest("Test device placement of internal tensors of VolumeLocator"):
|
||||
for device1, device2 in itertools.combinations(
|
||||
(torch.device("cpu"), torch.device("cuda:0")), 2
|
||||
):
|
||||
locator = locator.to(device1)
|
||||
locator = locator.to(device2)
|
||||
self.assertEqual(locator._grid_sizes.device, device2)
|
||||
self.assertEqual(locator._local_to_world_transform.device, device2)
|
||||
|
||||
def _check_padded(self, x_pad, x_list, grid_sizes):
|
||||
"""
|
||||
|
Loading…
x
Reference in New Issue
Block a user