mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
packed_to_padded now accepts all sizes
Summary: We need to make packing/unpacking in 2 places for mixed frame raysampling (metrics and raysampler) but those tensors that need to be unpacked/packed have more than two dimensions. I could have reshaped and stored dimensions but this seems to just complicate code there with something which packed_to_padded should support. I could have made a separate function for implicitron but it would confusing to have two different padded_to_packed functions inside pytorch3d codebase one of which does packing for (b, max) and (b, max, f) and the other for (b, max, …) Reviewed By: bottler Differential Revision: D39729026 fbshipit-source-id: 2bdebf290dcc6c316b7fe1aeee49bbb5255e508c
This commit is contained in:
parent
c2d876c9e8
commit
f34da3d3b6
@ -65,7 +65,7 @@ def packed_to_padded(inputs, first_idxs, max_size):
|
||||
Torch wrapper that handles allowed input shapes. See description below.
|
||||
|
||||
Args:
|
||||
inputs: FloatTensor of shape (F,) or (F, D), representing the packed
|
||||
inputs: FloatTensor of shape (F,) or (F, ...), representing the packed
|
||||
batch tensor, e.g. areas for faces in a batch of meshes.
|
||||
first_idxs: LongTensor of shape (N,) where N is the number of
|
||||
elements in the batch and `first_idxs[i] = f`
|
||||
@ -73,7 +73,7 @@ def packed_to_padded(inputs, first_idxs, max_size):
|
||||
max_size: Max length of an element in the batch.
|
||||
|
||||
Returns:
|
||||
inputs_padded: FloatTensor of shape (N, max_size) or (N, max_size, D)
|
||||
inputs_padded: FloatTensor of shape (N, max_size) or (N, max_size, ...)
|
||||
where max_size is max of `sizes`. The values for batch element i
|
||||
which start at `inputs[first_idxs[i]]` will be copied to
|
||||
`inputs_padded[i, :]`, with zeros padding out the extra inputs.
|
||||
@ -83,15 +83,20 @@ def packed_to_padded(inputs, first_idxs, max_size):
|
||||
(N, max_size, 1).
|
||||
"""
|
||||
# if inputs is of shape (F,), reshape into (F, 1)
|
||||
flat = False
|
||||
if inputs.dim() == 1:
|
||||
flat = True
|
||||
input_shape = inputs.shape
|
||||
n_dims = inputs.dim()
|
||||
if n_dims == 1:
|
||||
inputs = inputs.unsqueeze(1)
|
||||
else:
|
||||
inputs = inputs.reshape(input_shape[0], -1)
|
||||
inputs_padded = _PackedToPadded.apply(inputs, first_idxs, max_size)
|
||||
# if flat is True, reshape output to (N, max_size) from (N, max_size, 1)
|
||||
if flat:
|
||||
inputs_padded = inputs_padded.squeeze(2)
|
||||
return inputs_padded
|
||||
# else reshape output to (N, max_size, ...)
|
||||
if n_dims == 1:
|
||||
return inputs_padded.squeeze(2)
|
||||
if n_dims == 2:
|
||||
return inputs_padded
|
||||
return inputs_padded.view(*inputs_padded.shape[:2], *input_shape[1:])
|
||||
|
||||
|
||||
class _PaddedToPacked(Function):
|
||||
@ -147,7 +152,7 @@ def padded_to_packed(inputs, first_idxs, num_inputs):
|
||||
Torch wrapper that handles allowed input shapes. See description below.
|
||||
|
||||
Args:
|
||||
inputs: FloatTensor of shape (N, max_size) or (N, max_size, D),
|
||||
inputs: FloatTensor of shape (N, max_size) or (N, max_size, ...),
|
||||
representing the padded tensor, e.g. areas for faces in a batch of
|
||||
meshes.
|
||||
first_idxs: LongTensor of shape (N,) where N is the number of
|
||||
@ -156,20 +161,25 @@ def padded_to_packed(inputs, first_idxs, num_inputs):
|
||||
num_inputs: Number of packed entries (= F)
|
||||
|
||||
Returns:
|
||||
inputs_packed: FloatTensor of shape (F,) or (F, D) where
|
||||
`inputs_packed[first_idx[i]:] = inputs[i, :]`.
|
||||
inputs_packed: FloatTensor of shape (F,) or (F, ...) where
|
||||
`inputs_packed[first_idx[i]:first_idx[i+1]] = inputs[i, :]`.
|
||||
|
||||
To handle the allowed input shapes, we convert the inputs tensor of shape
|
||||
(N, max_size) to (N, max_size, 1). We reshape the output back to (F,) from
|
||||
(F, 1).
|
||||
"""
|
||||
# if inputs is of shape (N, max_size), reshape into (N, max_size, 1))
|
||||
flat = False
|
||||
if inputs.dim() == 2:
|
||||
flat = True
|
||||
input_shape = inputs.shape
|
||||
n_dims = inputs.dim()
|
||||
if n_dims == 2:
|
||||
inputs = inputs.unsqueeze(2)
|
||||
else:
|
||||
inputs = inputs.reshape(*input_shape[:2], -1)
|
||||
inputs_packed = _PaddedToPacked.apply(inputs, first_idxs, num_inputs)
|
||||
# if flat is True, reshape output to (F,) from (F, 1)
|
||||
if flat:
|
||||
inputs_packed = inputs_packed.squeeze(1)
|
||||
return inputs_packed
|
||||
# if input is flat, reshape output to (F,) from (F, 1)
|
||||
# else reshape output to (F, ...)
|
||||
if n_dims == 2:
|
||||
return inputs_packed.squeeze(1)
|
||||
if n_dims == 3:
|
||||
return inputs_packed
|
||||
return inputs_packed.view(-1, *input_shape[2:])
|
||||
|
@ -45,18 +45,19 @@ class TestPackedToPadded(TestCaseMixin, unittest.TestCase):
|
||||
PyTorch implementation of packed_to_padded function.
|
||||
"""
|
||||
num_meshes = first_idxs.size(0)
|
||||
D = inputs.shape[1] if inputs.dim() == 2 else 0
|
||||
if D == 0:
|
||||
if inputs.dim() == 1:
|
||||
inputs_padded = torch.zeros((num_meshes, max_size), device=device)
|
||||
else:
|
||||
inputs_padded = torch.zeros((num_meshes, max_size, D), device=device)
|
||||
inputs_padded = torch.zeros(
|
||||
(num_meshes, max_size, *inputs.shape[1:]), device=device
|
||||
)
|
||||
for m in range(num_meshes):
|
||||
s = first_idxs[m]
|
||||
if m == num_meshes - 1:
|
||||
f = inputs.shape[0]
|
||||
else:
|
||||
f = first_idxs[m + 1]
|
||||
inputs_padded[m, :f] = inputs[s:f]
|
||||
inputs_padded[m, : f - s] = inputs[s:f]
|
||||
|
||||
return inputs_padded
|
||||
|
||||
@ -66,22 +67,21 @@ class TestPackedToPadded(TestCaseMixin, unittest.TestCase):
|
||||
PyTorch implementation of padded_to_packed function.
|
||||
"""
|
||||
num_meshes = inputs.size(0)
|
||||
D = inputs.shape[2] if inputs.dim() == 3 else 0
|
||||
if D == 0:
|
||||
if inputs.dim() == 2:
|
||||
inputs_packed = torch.zeros((num_inputs,), device=device)
|
||||
else:
|
||||
inputs_packed = torch.zeros((num_inputs, D), device=device)
|
||||
inputs_packed = torch.zeros((num_inputs, *inputs.shape[2:]), device=device)
|
||||
for m in range(num_meshes):
|
||||
s = first_idxs[m]
|
||||
if m == num_meshes - 1:
|
||||
f = num_inputs
|
||||
else:
|
||||
f = first_idxs[m + 1]
|
||||
inputs_packed[s:f] = inputs[m, :f]
|
||||
inputs_packed[s:f] = inputs[m, : f - s]
|
||||
|
||||
return inputs_packed
|
||||
|
||||
def _test_packed_to_padded_helper(self, D, device):
|
||||
def _test_packed_to_padded_helper(self, dims, device):
|
||||
"""
|
||||
Check the results from packed_to_padded and PyTorch implementations
|
||||
are the same.
|
||||
@ -91,10 +91,12 @@ class TestPackedToPadded(TestCaseMixin, unittest.TestCase):
|
||||
mesh_to_faces_packed_first_idx = meshes.mesh_to_faces_packed_first_idx()
|
||||
max_faces = meshes.num_faces_per_mesh().max().item()
|
||||
|
||||
if D == 0:
|
||||
if len(dims) == 0:
|
||||
values = torch.rand((faces.shape[0],), device=device, requires_grad=True)
|
||||
else:
|
||||
values = torch.rand((faces.shape[0], D), device=device, requires_grad=True)
|
||||
values = torch.rand(
|
||||
(faces.shape[0], *dims), device=device, requires_grad=True
|
||||
)
|
||||
values_torch = values.detach().clone()
|
||||
values_torch.requires_grad = True
|
||||
values_padded = packed_to_padded(
|
||||
@ -107,10 +109,10 @@ class TestPackedToPadded(TestCaseMixin, unittest.TestCase):
|
||||
self.assertClose(values_padded, values_padded_torch)
|
||||
|
||||
# check backward
|
||||
if D == 0:
|
||||
if len(dims) == 0:
|
||||
grad_inputs = torch.rand((len(meshes), max_faces), device=device)
|
||||
else:
|
||||
grad_inputs = torch.rand((len(meshes), max_faces, D), device=device)
|
||||
grad_inputs = torch.rand((len(meshes), max_faces, *dims), device=device)
|
||||
values_padded.backward(grad_inputs)
|
||||
grad_outputs = values.grad
|
||||
values_padded_torch.backward(grad_inputs)
|
||||
@ -122,27 +124,41 @@ class TestPackedToPadded(TestCaseMixin, unittest.TestCase):
|
||||
self.assertClose(grad_outputs, grad_outputs_torch2)
|
||||
|
||||
def test_packed_to_padded_flat_cpu(self):
|
||||
self._test_packed_to_padded_helper(0, "cpu")
|
||||
self._test_packed_to_padded_helper([], "cpu")
|
||||
|
||||
def test_packed_to_padded_D1_cpu(self):
|
||||
self._test_packed_to_padded_helper(1, "cpu")
|
||||
self._test_packed_to_padded_helper([1], "cpu")
|
||||
|
||||
def test_packed_to_padded_D16_cpu(self):
|
||||
self._test_packed_to_padded_helper(16, "cpu")
|
||||
self._test_packed_to_padded_helper([16], "cpu")
|
||||
|
||||
def test_packed_to_padded_D16_9_cpu(self):
|
||||
self._test_packed_to_padded_helper([16, 9], "cpu")
|
||||
|
||||
def test_packed_to_padded_D16_3_2_cpu(self):
|
||||
self._test_packed_to_padded_helper([16, 3, 2], "cpu")
|
||||
|
||||
def test_packed_to_padded_flat_cuda(self):
|
||||
device = get_random_cuda_device()
|
||||
self._test_packed_to_padded_helper(0, device)
|
||||
self._test_packed_to_padded_helper([], device)
|
||||
|
||||
def test_packed_to_padded_D1_cuda(self):
|
||||
device = get_random_cuda_device()
|
||||
self._test_packed_to_padded_helper(1, device)
|
||||
self._test_packed_to_padded_helper([1], device)
|
||||
|
||||
def test_packed_to_padded_D16_cuda(self):
|
||||
device = get_random_cuda_device()
|
||||
self._test_packed_to_padded_helper(16, device)
|
||||
self._test_packed_to_padded_helper([16], device)
|
||||
|
||||
def _test_padded_to_packed_helper(self, D, device):
|
||||
def test_packed_to_padded_D16_9_cuda(self):
|
||||
device = get_random_cuda_device()
|
||||
self._test_packed_to_padded_helper([16, 9], device)
|
||||
|
||||
def test_packed_to_padded_D16_3_2_cuda(self):
|
||||
device = get_random_cuda_device()
|
||||
self._test_packed_to_padded_helper([16, 3, 2], device)
|
||||
|
||||
def _test_padded_to_packed_helper(self, dims, device):
|
||||
"""
|
||||
Check the results from packed_to_padded and PyTorch implementations
|
||||
are the same.
|
||||
@ -151,10 +167,10 @@ class TestPackedToPadded(TestCaseMixin, unittest.TestCase):
|
||||
mesh_to_faces_packed_first_idx = meshes.mesh_to_faces_packed_first_idx()
|
||||
num_faces_per_mesh = meshes.num_faces_per_mesh()
|
||||
max_faces = num_faces_per_mesh.max().item()
|
||||
if D == 0:
|
||||
if len(dims) == 0:
|
||||
values = torch.rand((len(meshes), max_faces), device=device)
|
||||
else:
|
||||
values = torch.rand((len(meshes), max_faces, D), device=device)
|
||||
values = torch.rand((len(meshes), max_faces, *dims), device=device)
|
||||
for i, num in enumerate(num_faces_per_mesh):
|
||||
values[i, num:] = 0
|
||||
values.requires_grad = True
|
||||
@ -173,11 +189,11 @@ class TestPackedToPadded(TestCaseMixin, unittest.TestCase):
|
||||
self.assertClose(values_packed, values_packed_torch)
|
||||
|
||||
# check backward
|
||||
if D == 0:
|
||||
if len(dims) == 0:
|
||||
grad_inputs = torch.rand((num_faces_per_mesh.sum().item()), device=device)
|
||||
else:
|
||||
grad_inputs = torch.rand(
|
||||
(num_faces_per_mesh.sum().item(), D), device=device
|
||||
(num_faces_per_mesh.sum().item(), *dims), device=device
|
||||
)
|
||||
values_packed.backward(grad_inputs)
|
||||
grad_outputs = values.grad
|
||||
@ -190,41 +206,39 @@ class TestPackedToPadded(TestCaseMixin, unittest.TestCase):
|
||||
self.assertClose(grad_outputs, grad_outputs_torch2)
|
||||
|
||||
def test_padded_to_packed_flat_cpu(self):
|
||||
self._test_padded_to_packed_helper(0, "cpu")
|
||||
self._test_padded_to_packed_helper([], "cpu")
|
||||
|
||||
def test_padded_to_packed_D1_cpu(self):
|
||||
self._test_padded_to_packed_helper(1, "cpu")
|
||||
self._test_padded_to_packed_helper([1], "cpu")
|
||||
|
||||
def test_padded_to_packed_D16_cpu(self):
|
||||
self._test_padded_to_packed_helper(16, "cpu")
|
||||
self._test_padded_to_packed_helper([16], "cpu")
|
||||
|
||||
def test_padded_to_packed_D16_9_cpu(self):
|
||||
self._test_padded_to_packed_helper([16, 9], "cpu")
|
||||
|
||||
def test_padded_to_packed_D16_3_2_cpu(self):
|
||||
self._test_padded_to_packed_helper([16, 3, 2], "cpu")
|
||||
|
||||
def test_padded_to_packed_flat_cuda(self):
|
||||
device = get_random_cuda_device()
|
||||
self._test_padded_to_packed_helper(0, device)
|
||||
self._test_padded_to_packed_helper([], device)
|
||||
|
||||
def test_padded_to_packed_D1_cuda(self):
|
||||
device = get_random_cuda_device()
|
||||
self._test_padded_to_packed_helper(1, device)
|
||||
self._test_padded_to_packed_helper([1], device)
|
||||
|
||||
def test_padded_to_packed_D16_cuda(self):
|
||||
device = get_random_cuda_device()
|
||||
self._test_padded_to_packed_helper(16, device)
|
||||
self._test_padded_to_packed_helper([16], device)
|
||||
|
||||
def test_invalid_inputs_shapes(self, device="cuda:0"):
|
||||
with self.assertRaisesRegex(ValueError, "input can only be 2-dimensional."):
|
||||
values = torch.rand((100, 50, 2), device=device)
|
||||
first_idxs = torch.tensor([0, 80], dtype=torch.int64, device=device)
|
||||
packed_to_padded(values, first_idxs, 100)
|
||||
def test_padded_to_packed_D16_9_cuda(self):
|
||||
device = get_random_cuda_device()
|
||||
self._test_padded_to_packed_helper([16, 9], device)
|
||||
|
||||
with self.assertRaisesRegex(ValueError, "input can only be 3-dimensional."):
|
||||
values = torch.rand((100,), device=device)
|
||||
first_idxs = torch.tensor([0, 80], dtype=torch.int64, device=device)
|
||||
padded_to_packed(values, first_idxs, 20)
|
||||
|
||||
with self.assertRaisesRegex(ValueError, "input can only be 3-dimensional."):
|
||||
values = torch.rand((100, 50, 2, 2), device=device)
|
||||
first_idxs = torch.tensor([0, 80], dtype=torch.int64, device=device)
|
||||
padded_to_packed(values, first_idxs, 20)
|
||||
def test_padded_to_packed_D16_3_2_cuda(self):
|
||||
device = get_random_cuda_device()
|
||||
self._test_padded_to_packed_helper([16, 3, 2], device)
|
||||
|
||||
@staticmethod
|
||||
def packed_to_padded_with_init(
|
||||
|
Loading…
x
Reference in New Issue
Block a user