mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Submeshing TexturesAtlas for PyTorch3D 3D Rendering
Summary: Implement submeshing for TexturesAtlas and add associated test Reviewed By: bottler Differential Revision: D52334053 fbshipit-source-id: d54080e9af1f0c01551702736e858e3bd439ac58
This commit is contained in:
parent
8a27590c5f
commit
e46ab49a34
@ -549,6 +549,33 @@ class TexturesAtlas(TexturesBase):
|
||||
|
||||
return texels
|
||||
|
||||
def submeshes(
|
||||
self,
|
||||
vertex_ids_list: List[List[torch.LongTensor]],
|
||||
faces_ids_list: List[List[torch.LongTensor]],
|
||||
) -> "TexturesAtlas":
|
||||
"""
|
||||
Extract a sub-texture for use in a submesh.
|
||||
|
||||
If the meshes batch corresponding to this TextureAtlas contains
|
||||
`n = len(faces_ids_list)` meshes, then self.atlas_list()
|
||||
will be of length n. After submeshing, we obtain a batch of
|
||||
`k = sum(len(v) for v in atlas_list` submeshes (see Meshes.submeshes). This
|
||||
function creates a corresponding TexturesAtlas object with `atlas_list`
|
||||
of length `k`.
|
||||
"""
|
||||
if len(faces_ids_list) != len(self.atlas_list()):
|
||||
raise IndexError(
|
||||
"faces_ids_list must be of " "the same length as atlas_list."
|
||||
)
|
||||
|
||||
sub_features = []
|
||||
for atlas, faces_ids in zip(self.atlas_list(), faces_ids_list):
|
||||
for faces_ids_submesh in faces_ids:
|
||||
sub_features.append(atlas[faces_ids_submesh])
|
||||
|
||||
return self.__class__(sub_features)
|
||||
|
||||
def faces_verts_textures_packed(self) -> torch.Tensor:
|
||||
"""
|
||||
Samples texture from each vertex for each face in the mesh.
|
||||
|
@ -1576,8 +1576,6 @@ class Meshes:
|
||||
Returns:
|
||||
Meshes object of length `sum(len(ids) for ids in face_indices)`.
|
||||
|
||||
Submeshing only works with no textures, TexturesVertex, or TexturesUV.
|
||||
|
||||
Example 1:
|
||||
|
||||
If `meshes` has batch size 1, and `face_indices` is a 1D LongTensor,
|
||||
|
@ -576,6 +576,39 @@ class TestTexturesAtlas(TestCaseMixin, unittest.TestCase):
|
||||
with self.assertRaisesRegex(ValueError, "do not match the dimensions"):
|
||||
meshes.sample_textures(None)
|
||||
|
||||
def test_submeshes(self):
|
||||
N = 2
|
||||
V = 5
|
||||
F = 5
|
||||
tex = TexturesAtlas(
|
||||
atlas=torch.arange(N * F * 4 * 4 * 3, dtype=torch.float32).reshape(
|
||||
N, F, 4, 4, 3
|
||||
)
|
||||
)
|
||||
|
||||
verts = torch.rand(size=(N, V, 3))
|
||||
faces = torch.randint(size=(N, F, 3), high=V)
|
||||
mesh = Meshes(verts=verts, faces=faces, textures=tex)
|
||||
|
||||
sub_faces = [
|
||||
[torch.tensor([0, 2]), torch.tensor([1, 2])],
|
||||
[],
|
||||
]
|
||||
subtex = mesh.submeshes(sub_faces).textures
|
||||
subtex_faces = subtex.atlas_list()
|
||||
|
||||
self.assertEqual(len(subtex_faces), 2)
|
||||
self.assertClose(
|
||||
subtex_faces[0].flatten().msort(),
|
||||
torch.cat(
|
||||
(
|
||||
torch.arange(4 * 4 * 3, dtype=torch.float32),
|
||||
torch.arange(96, 96 + 4 * 4 * 3, dtype=torch.float32),
|
||||
),
|
||||
0,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class TestTexturesUV(TestCaseMixin, unittest.TestCase):
|
||||
def setUp(self) -> None:
|
||||
|
Loading…
x
Reference in New Issue
Block a user