Build wheels for s3

Summary: For Linux, instead of uploading wheels to PyPI which will only work with one particular version of PyTorch and CUDA, from the next release we will store a range of built wheels on S3.

Reviewed By: nikhilaravi

Differential Revision: D26209398

fbshipit-source-id: 945a6907b78807e1eedb25007f87f90bbf59f80e
This commit is contained in:
Jeremy Reizenstein 2021-02-05 05:50:46 -08:00 committed by Facebook GitHub Bot
parent 3463f418b8
commit e0753f0b0d
11 changed files with 261 additions and 45 deletions

View File

@ -248,14 +248,19 @@ workflows:
cu_version: cpu
name: macos_wheel_py36_cpu
python_version: '3.6'
pytorch_version: '1.6.0'
pytorch_version: '1.7.1'
- binary_macos_wheel:
cu_version: cpu
name: macos_wheel_py37_cpu
python_version: '3.7'
pytorch_version: '1.6.0'
pytorch_version: '1.7.1'
- binary_macos_wheel:
cu_version: cpu
name: macos_wheel_py38_cpu
python_version: '3.8'
pytorch_version: '1.6.0'
pytorch_version: '1.7.1'
- binary_macos_wheel:
cu_version: cpu
name: macos_wheel_py39_cpu
python_version: '3.9'
pytorch_version: '1.7.1'

View File

@ -549,24 +549,6 @@ workflows:
name: linux_conda_py39_cu110_pyt171
python_version: '3.9'
pytorch_version: 1.7.1
- binary_linux_wheel:
context: DOCKERHUB_TOKEN
cu_version: cu101
name: linux_wheel_py36_cu101_pyt160
python_version: '3.6'
pytorch_version: 1.6.0
- binary_linux_wheel:
context: DOCKERHUB_TOKEN
cu_version: cu101
name: linux_wheel_py37_cu101_pyt160
python_version: '3.7'
pytorch_version: 1.6.0
- binary_linux_wheel:
context: DOCKERHUB_TOKEN
cu_version: cu101
name: linux_wheel_py38_cu101_pyt160
python_version: '3.8'
pytorch_version: 1.6.0
- binary_linux_conda_cuda:
name: testrun_conda_cuda_py36_cu101_pyt14
context: DOCKERHUB_TOKEN
@ -589,14 +571,19 @@ workflows:
cu_version: cpu
name: macos_wheel_py36_cpu
python_version: '3.6'
pytorch_version: '1.6.0'
pytorch_version: '1.7.1'
- binary_macos_wheel:
cu_version: cpu
name: macos_wheel_py37_cpu
python_version: '3.7'
pytorch_version: '1.6.0'
pytorch_version: '1.7.1'
- binary_macos_wheel:
cu_version: cpu
name: macos_wheel_py38_cpu
python_version: '3.8'
pytorch_version: '1.6.0'
pytorch_version: '1.7.1'
- binary_macos_wheel:
cu_version: cpu
name: macos_wheel_py39_cpu
python_version: '3.9'
pytorch_version: '1.7.1'

View File

@ -46,18 +46,6 @@ def workflows(prefix="", filter_branch=None, upload=False, indentation=6):
upload=upload,
filter_branch=filter_branch,
)
for btype in ["wheel"]:
for python_version in ["3.6", "3.7", "3.8"]:
for cu_version in ["cu101"]:
w += workflow_pair(
btype=btype,
python_version=python_version,
pytorch_version="1.6.0",
cu_version=cu_version,
prefix=prefix,
upload=upload,
filter_branch=filter_branch,
)
return indent(indentation, w)

View File

@ -9,7 +9,7 @@ The core library is written in PyTorch. Several components have underlying imple
- Linux or macOS or Windows
- Python 3.6, 3.7 or 3.8
- PyTorch 1.4, 1.5.0, 1.5.1, 1.6.0, or 1.7.0.
- PyTorch 1.4, 1.5.0, 1.5.1, 1.6.0, 1.7.0, or 1.7.1.
- torchvision that matches the PyTorch installation. You can install them together as explained at pytorch.org to make sure of this.
- gcc & g++ ≥ 4.9
- [fvcore](https://github.com/facebookresearch/fvcore)
@ -21,8 +21,8 @@ The runtime dependencies can be installed by running:
```
conda create -n pytorch3d python=3.8
conda activate pytorch3d
conda install -c pytorch pytorch=1.7.0 torchvision cudatoolkit=10.2
conda install -c conda-forge fvcore iopath
conda install -c pytorch pytorch=1.7.1 torchvision cudatoolkit=10.2
conda install -c conda-forge -c fvcore -c iopath fvcore iopath
```
For the CUB build time dependency, if you are using conda, you can continue with
@ -77,12 +77,31 @@ Or, to install a nightly (non-official, alpha) build:
# Anaconda Cloud
conda install pytorch3d -c pytorch3d-nightly
```
### 2. Install from PyPI, on Linux and Mac
This works with pytorch 1.6.0 only.
### 2. Install from PyPI, on Mac only.
This works with pytorch 1.7.1 only. The build is CPU only.
```
pip install pytorch3d
```
On Linux this has support for CUDA 10.1. On Mac this is CPU-only.
### 3. Install wheels for Linux
We have prebuilt wheels with CUDA for Linux for PyTorch 1.7.0 and 1.7.1, for each of the CUDA versions that they support.
These are installed in a special way.
For example, to install for Python 3.6, PyTorch 1.7.0 and CUDA 10.1
```
pip install pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py36_cu101_pyt170/download.html
```
In general, from inside IPython, or in Google Colab or a jupyter notebook, you can install with
```
import sys
import torch
version_str="".join([
f"py3{sys.version_info.minor}_cu",
torch.version.cuda.replace(".",""),
f"_pyt{torch.__version__[0:5:2]}"
])
!pip install pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html
```
## Building / installing from source.
CUDA support will be included if CUDA is available in pytorch or if the environment variable

View File

@ -19,7 +19,7 @@ conda init bash
source ~/.bashrc
conda create -y -n myenv python=3.8 matplotlib ipython ipywidgets nbconvert
conda activate myenv
conda install -y -c conda-forge fvcore iopath
conda install -y -c conda-forge -c fvcore -c iopath fvcore iopath
conda install -y -c pytorch pytorch=1.6.0 cudatoolkit=10.1 torchvision
conda install -y -c pytorch3d-nightly pytorch3d
pip install plotly scikit-image

View File

@ -0,0 +1,29 @@
## Building Linux pip Packages
1. Make sure this directory is on a filesystem which docker can
use - e.g. not NFS. If you are using a local hard drive there is
nothing to do here.
2. You may want to `docker pull pytorch/conda-cuda:latest`.
3. Run `bash go.sh` in this directory. This takes ages
and writes packages to `inside/output`.
4. You can upload the packages to s3, along with basic html files
which enable them to be used, with `bash after.sh`.
In particular, if you are in a jupyter/colab notebook you can
then install using these wheels with the following series of
commands.
```
import sys
import torch
version_str="".join([
f"py3{sys.version_info.minor}_cu",
torch.version.cuda.replace(".",""),
f"_pyt{torch.__version__[0:5:2]}"
])
!pip install pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html
```

View File

@ -0,0 +1,5 @@
#!/usr/bin/bash
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
set -ex
sudo chown -R "$USER" output
python publish.py

View File

@ -0,0 +1,3 @@
#!/usr/bin/bash
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
sudo docker run --rm -v "$PWD/../../:/inside" pytorch/conda-cuda bash inside/packaging/linux_wheels/inside.sh

View File

@ -0,0 +1,102 @@
#!/bin/bash
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
set -ex
conda init bash
# shellcheck source=/dev/null
source ~/.bashrc
cd /inside
VERSION=$(python -c "exec(open('pytorch3d/__init__.py').read()); print(__version__)")
export BUILD_VERSION=$VERSION
export FORCE_CUDA=1
wget --no-verbose https://github.com/NVIDIA/cub/archive/1.10.0.tar.gz
tar xzf 1.10.0.tar.gz
CUB_HOME=$(realpath ./cub-1.10.0)
export CUB_HOME
echo "CUB_HOME is now $CUB_HOME"
PYTHON_VERSIONS="3.6 3.7 3.8 3.9"
# the keys are pytorch versions
declare -A CONDA_CUDA_VERSIONS=(
# ["1.4.0"]="cu101"
# ["1.5.0"]="cu101 cu102"
# ["1.5.1"]="cu101 cu102"
# ["1.6.0"]="cu101 cu102"
["1.7.0"]="cu101 cu102 cu110"
["1.7.1"]="cu101 cu102 cu110"
)
for python_version in $PYTHON_VERSIONS
do
for pytorch_version in "${!CONDA_CUDA_VERSIONS[@]}"
do
if [[ "3.6 3.7 3.8" != *$python_version* ]] && [[ "1.4.0 1.5.0 1.5.1 1.6.0 1.7.0" == *$pytorch_version* ]]
then
#python 3.9 and later not supported by pytorch 1.7.0 and before
continue
fi
if [[ "3.9" == "$python_version" ]]
then
extra_channel="-c conda-forge"
else
extra_channel=""
fi
for cu_version in ${CONDA_CUDA_VERSIONS[$pytorch_version]}
do
case "$cu_version" in
cu110)
export CUDA_HOME=/usr/local/cuda-11.0/
export CUDA_TAG=11.0
export NVCC_FLAGS="-gencode=arch=compute_35,code=sm_35 -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_80,code=sm_80 -gencode=arch=compute_50,code=compute_50"
;;
cu102)
export CUDA_HOME=/usr/local/cuda-10.2/
export CUDA_TAG=10.2
export NVCC_FLAGS="-gencode=arch=compute_35,code=sm_35 -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_50,code=compute_50"
;;
cu101)
export CUDA_HOME=/usr/local/cuda-10.1/
export CUDA_TAG=10.1
export NVCC_FLAGS="-gencode=arch=compute_35,code=sm_35 -gencode=arch=compute_50,code=sm_50 -gencode=arch=compute_60,code=sm_60 -gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_75,code=sm_75 -gencode=arch=compute_50,code=compute_50"
;;
*)
echo "Unrecognized cu_version=$cu_version"
exit 1
;;
esac
tag=py"${python_version//./}"_"${cu_version}"_pyt"${pytorch_version//./}"
outdir="/inside/packaging/linux_wheels/output/$tag"
if [[ -d "$outdir" ]]
then
continue
fi
conda create -y -n "$tag" "python=$python_version"
conda activate "$tag"
conda install -y -c pytorch $extra_channel "pytorch=$pytorch_version" "cudatoolkit=$CUDA_TAG" torchvision
pip install fvcore iopath
echo "python version" "$python_version" "pytorch version" "$pytorch_version" "cuda version" "$cu_version" "tag" "$tag"
rm -rf dist
python setup.py clean
python setup.py bdist_wheel
rm -rf "$outdir"
mkdir -p "$outdir"
cp dist/*whl "$outdir"
conda deactivate
done
done
done
echo "DONE"

View File

@ -0,0 +1,76 @@
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import os
import subprocess
from pathlib import Path
from typing import List
dest = "s3://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/"
output = Path("output")
def fs3cmd(args, allow_failure: bool = False) -> List[str]:
"""
This function returns the args for subprocess to mimic the bash command
fs3cmd available in the fairusers_aws module on the FAIR cluster.
"""
os.environ["FAIR_CLUSTER_NAME"] = os.environ["FAIR_ENV_CLUSTER"].lower()
cmd_args = ["/public/apps/fairusers_aws/bin/fs3cmd"] + args
return cmd_args
def fs3_exists(path) -> bool:
"""
Returns True if the path exists inside dest on S3.
In fact, will also return True if there is a file which has the given
path as a prefix, but we are careful about this.
"""
out = subprocess.check_output(fs3cmd(["ls", path]))
return len(out) != 0
def get_html_wrappers() -> None:
for directory in sorted(output.iterdir()):
output_wrapper = directory / "download.html"
assert not output_wrapper.exists()
dest_wrapper = dest + directory.name + "/download.html"
if fs3_exists(dest_wrapper):
subprocess.check_call(fs3cmd(["get", dest_wrapper, str(output_wrapper)]))
def write_html_wrappers() -> None:
html = """
<a href="$">$</a><br>
"""
for directory in sorted(output.iterdir()):
files = list(directory.glob("*.whl"))
assert len(files) == 1, files
[wheel] = files
this_html = html.replace("$", wheel.name)
output_wrapper = directory / "download.html"
if output_wrapper.exists():
contents = output_wrapper.read_text()
if this_html not in contents:
with open(output_wrapper, "a") as f:
f.write(this_html)
else:
output_wrapper.write_text(this_html)
def to_aws() -> None:
for directory in output.iterdir():
for file in directory.iterdir():
print(file)
subprocess.check_call(
fs3cmd(["put", str(file), dest + str(file.relative_to(output))])
)
if __name__ == "__main__":
# Uncomment this for subsequent releases.
# get_html_wrappers()
write_html_wrappers()
to_aws()

View File

@ -132,8 +132,10 @@ setup(
url="https://github.com/facebookresearch/pytorch3d",
description="PyTorch3D is FAIR's library of reusable components "
"for deep Learning with 3D data.",
packages=find_packages(exclude=("configs", "tests", "tests.*")),
install_requires=["torchvision>=0.4", "fvcore", "iopath"],
packages=find_packages(
exclude=("configs", "tests", "tests.*", "docs.*", "projects.*")
),
install_requires=["fvcore", "iopath"],
extras_require={
"all": ["matplotlib", "tqdm>4.29.0", "imageio", "ipywidgets"],
"dev": ["flake8", "isort", "black==19.3b0"],