mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
suppress errors in vision/fair/pytorch3d
Differential Revision: D41897914 fbshipit-source-id: 675f4ad6938bc12d295bbb63a69e3ff98b319a9a
This commit is contained in:
parent
a4a29b013b
commit
de3a474d2b
@ -88,7 +88,6 @@ class _PointFaceDistance(Function):
|
|||||||
return grad_points, None, grad_tris, None, None, None
|
return grad_points, None, grad_tris, None, None, None
|
||||||
|
|
||||||
|
|
||||||
# pyre-fixme[16]: `_PointFaceDistance` has no attribute `apply`.
|
|
||||||
point_face_distance = _PointFaceDistance.apply
|
point_face_distance = _PointFaceDistance.apply
|
||||||
|
|
||||||
|
|
||||||
@ -151,7 +150,6 @@ class _FacePointDistance(Function):
|
|||||||
return grad_points, None, grad_tris, None, None, None
|
return grad_points, None, grad_tris, None, None, None
|
||||||
|
|
||||||
|
|
||||||
# pyre-fixme[16]: `_FacePointDistance` has no attribute `apply`.
|
|
||||||
face_point_distance = _FacePointDistance.apply
|
face_point_distance = _FacePointDistance.apply
|
||||||
|
|
||||||
|
|
||||||
@ -202,7 +200,6 @@ class _PointEdgeDistance(Function):
|
|||||||
return grad_points, None, grad_segms, None, None
|
return grad_points, None, grad_segms, None, None
|
||||||
|
|
||||||
|
|
||||||
# pyre-fixme[16]: `_PointEdgeDistance` has no attribute `apply`.
|
|
||||||
point_edge_distance = _PointEdgeDistance.apply
|
point_edge_distance = _PointEdgeDistance.apply
|
||||||
|
|
||||||
|
|
||||||
@ -253,7 +250,6 @@ class _EdgePointDistance(Function):
|
|||||||
return grad_points, None, grad_segms, None, None
|
return grad_points, None, grad_segms, None, None
|
||||||
|
|
||||||
|
|
||||||
# pyre-fixme[16]: `_EdgePointDistance` has no attribute `apply`.
|
|
||||||
edge_point_distance = _EdgePointDistance.apply
|
edge_point_distance = _EdgePointDistance.apply
|
||||||
|
|
||||||
|
|
||||||
|
@ -132,7 +132,6 @@ def ball_query(
|
|||||||
if lengths2 is None:
|
if lengths2 is None:
|
||||||
lengths2 = torch.full((N,), P2, dtype=torch.int64, device=p1.device)
|
lengths2 = torch.full((N,), P2, dtype=torch.int64, device=p1.device)
|
||||||
|
|
||||||
# pyre-fixme[16]: `_ball_query` has no attribute `apply`.
|
|
||||||
dists, idx = _ball_query.apply(p1, p2, lengths1, lengths2, K, radius)
|
dists, idx = _ball_query.apply(p1, p2, lengths1, lengths2, K, radius)
|
||||||
|
|
||||||
# Gather the neighbors if needed
|
# Gather the neighbors if needed
|
||||||
|
@ -171,5 +171,4 @@ class GatherScatter(Function):
|
|||||||
return grad_input, grad_edges, grad_directed
|
return grad_input, grad_edges, grad_directed
|
||||||
|
|
||||||
|
|
||||||
# pyre-fixme[16]: `GatherScatter` has no attribute `apply`.
|
|
||||||
gather_scatter = GatherScatter.apply
|
gather_scatter = GatherScatter.apply
|
||||||
|
@ -56,7 +56,6 @@ def interpolate_face_attributes(
|
|||||||
pix_to_face = pix_to_face.view(-1)
|
pix_to_face = pix_to_face.view(-1)
|
||||||
barycentric_coords = barycentric_coords.view(N * H * W * K, 3)
|
barycentric_coords = barycentric_coords.view(N * H * W * K, 3)
|
||||||
args = (pix_to_face, barycentric_coords, face_attributes)
|
args = (pix_to_face, barycentric_coords, face_attributes)
|
||||||
# pyre-fixme[16]: `_InterpFaceAttrs` has no attribute `apply`.
|
|
||||||
out = _InterpFaceAttrs.apply(*args)
|
out = _InterpFaceAttrs.apply(*args)
|
||||||
out = out.view(N, H, W, K, -1)
|
out = out.view(N, H, W, K, -1)
|
||||||
return out
|
return out
|
||||||
|
@ -161,7 +161,6 @@ def box3d_overlap(
|
|||||||
_check_nonzero(boxes1, eps)
|
_check_nonzero(boxes1, eps)
|
||||||
_check_nonzero(boxes2, eps)
|
_check_nonzero(boxes2, eps)
|
||||||
|
|
||||||
# pyre-fixme[16]: `_box3d_overlap` has no attribute `apply`.
|
|
||||||
vol, iou = _box3d_overlap.apply(boxes1, boxes2)
|
vol, iou = _box3d_overlap.apply(boxes1, boxes2)
|
||||||
|
|
||||||
return vol, iou
|
return vol, iou
|
||||||
|
@ -184,7 +184,6 @@ def knn_points(
|
|||||||
if lengths2 is None:
|
if lengths2 is None:
|
||||||
lengths2 = torch.full((p1.shape[0],), P2, dtype=torch.int64, device=p1.device)
|
lengths2 = torch.full((p1.shape[0],), P2, dtype=torch.int64, device=p1.device)
|
||||||
|
|
||||||
# pyre-fixme[16]: `_knn_points` has no attribute `apply`.
|
|
||||||
p1_dists, p1_idx = _knn_points.apply(
|
p1_dists, p1_idx = _knn_points.apply(
|
||||||
p1, p2, lengths1, lengths2, K, version, norm, return_sorted
|
p1, p2, lengths1, lengths2, K, version, norm, return_sorted
|
||||||
)
|
)
|
||||||
|
@ -278,7 +278,6 @@ def marching_cubes(
|
|||||||
for i in range(len(vol_batch)):
|
for i in range(len(vol_batch)):
|
||||||
vol = vol_batch[i]
|
vol = vol_batch[i]
|
||||||
thresh = ((vol.max() + vol.min()) / 2).item() if isolevel is None else isolevel
|
thresh = ((vol.max() + vol.min()) / 2).item() if isolevel is None else isolevel
|
||||||
# pyre-fixme[16]: `_marching_cubes` has no attribute `apply`.
|
|
||||||
verts, faces, ids = _marching_cubes.apply(vol, thresh)
|
verts, faces, ids = _marching_cubes.apply(vol, thresh)
|
||||||
if len(faces) > 0 and len(verts) > 0:
|
if len(faces) > 0 and len(verts) > 0:
|
||||||
# Convert from world coordinates ([0, D-1], [0, H-1], [0, W-1]) to
|
# Convert from world coordinates ([0, D-1], [0, H-1], [0, W-1]) to
|
||||||
|
@ -63,5 +63,4 @@ class _MeshFaceAreasNormals(Function):
|
|||||||
return grad_verts, None
|
return grad_verts, None
|
||||||
|
|
||||||
|
|
||||||
# pyre-fixme[16]: `_MeshFaceAreasNormals` has no attribute `apply`.
|
|
||||||
mesh_face_areas_normals = _MeshFaceAreasNormals.apply
|
mesh_face_areas_normals = _MeshFaceAreasNormals.apply
|
||||||
|
@ -91,7 +91,6 @@ def packed_to_padded(
|
|||||||
inputs = inputs.unsqueeze(1)
|
inputs = inputs.unsqueeze(1)
|
||||||
else:
|
else:
|
||||||
inputs = inputs.reshape(input_shape[0], -1)
|
inputs = inputs.reshape(input_shape[0], -1)
|
||||||
# pyre-ignore [16]
|
|
||||||
inputs_padded = _PackedToPadded.apply(inputs, first_idxs, max_size)
|
inputs_padded = _PackedToPadded.apply(inputs, first_idxs, max_size)
|
||||||
# if flat is True, reshape output to (N, max_size) from (N, max_size, 1)
|
# if flat is True, reshape output to (N, max_size) from (N, max_size, 1)
|
||||||
# else reshape output to (N, max_size, ...)
|
# else reshape output to (N, max_size, ...)
|
||||||
@ -188,7 +187,6 @@ def padded_to_packed(
|
|||||||
inputs = inputs.unsqueeze(2)
|
inputs = inputs.unsqueeze(2)
|
||||||
else:
|
else:
|
||||||
inputs = inputs.reshape(*input_shape[:2], -1)
|
inputs = inputs.reshape(*input_shape[:2], -1)
|
||||||
# pyre-ignore [16]
|
|
||||||
inputs_packed = _PaddedToPacked.apply(inputs, first_idxs, num_inputs)
|
inputs_packed = _PaddedToPacked.apply(inputs, first_idxs, num_inputs)
|
||||||
# if input is flat, reshape output to (F,) from (F, 1)
|
# if input is flat, reshape output to (F,) from (F, 1)
|
||||||
# else reshape output to (F, ...)
|
# else reshape output to (F, ...)
|
||||||
|
@ -183,7 +183,6 @@ class _points_to_volumes_function(Function):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
# pyre-fixme[16]: `_points_to_volumes_function` has no attribute `apply`.
|
|
||||||
_points_to_volumes = _points_to_volumes_function.apply
|
_points_to_volumes = _points_to_volumes_function.apply
|
||||||
|
|
||||||
|
|
||||||
|
@ -108,7 +108,6 @@ class _SigmoidAlphaBlend(torch.autograd.Function):
|
|||||||
return grad_dists, None, None
|
return grad_dists, None, None
|
||||||
|
|
||||||
|
|
||||||
# pyre-fixme[16]: `_SigmoidAlphaBlend` has no attribute `apply`.
|
|
||||||
_sigmoid_alpha = _SigmoidAlphaBlend.apply
|
_sigmoid_alpha = _SigmoidAlphaBlend.apply
|
||||||
|
|
||||||
|
|
||||||
|
@ -90,7 +90,6 @@ def alpha_composite(pointsidx, alphas, pt_clds) -> torch.Tensor:
|
|||||||
Combined features: Tensor of shape (N, C, image_size, image_size)
|
Combined features: Tensor of shape (N, C, image_size, image_size)
|
||||||
giving the accumulated features at each point.
|
giving the accumulated features at each point.
|
||||||
"""
|
"""
|
||||||
# pyre-fixme[16]: `_CompositeAlphaPoints` has no attribute `apply`.
|
|
||||||
return _CompositeAlphaPoints.apply(pt_clds, alphas, pointsidx)
|
return _CompositeAlphaPoints.apply(pt_clds, alphas, pointsidx)
|
||||||
|
|
||||||
|
|
||||||
@ -169,7 +168,6 @@ def norm_weighted_sum(pointsidx, alphas, pt_clds) -> torch.Tensor:
|
|||||||
Combined features: Tensor of shape (N, C, image_size, image_size)
|
Combined features: Tensor of shape (N, C, image_size, image_size)
|
||||||
giving the accumulated features at each point.
|
giving the accumulated features at each point.
|
||||||
"""
|
"""
|
||||||
# pyre-fixme[16]: `_CompositeNormWeightedSumPoints` has no attribute `apply`.
|
|
||||||
return _CompositeNormWeightedSumPoints.apply(pt_clds, alphas, pointsidx)
|
return _CompositeNormWeightedSumPoints.apply(pt_clds, alphas, pointsidx)
|
||||||
|
|
||||||
|
|
||||||
@ -241,5 +239,4 @@ def weighted_sum(pointsidx, alphas, pt_clds) -> torch.Tensor:
|
|||||||
Combined features: Tensor of shape (N, C, image_size, image_size)
|
Combined features: Tensor of shape (N, C, image_size, image_size)
|
||||||
giving the accumulated features at each point.
|
giving the accumulated features at each point.
|
||||||
"""
|
"""
|
||||||
# pyre-fixme[16]: `_CompositeWeightedSumPoints` has no attribute `apply`.
|
|
||||||
return _CompositeWeightedSumPoints.apply(pt_clds, alphas, pointsidx)
|
return _CompositeWeightedSumPoints.apply(pt_clds, alphas, pointsidx)
|
||||||
|
@ -220,7 +220,6 @@ def rasterize_meshes(
|
|||||||
if max_faces_per_bin is None:
|
if max_faces_per_bin is None:
|
||||||
max_faces_per_bin = int(max(10000, meshes._F / 5))
|
max_faces_per_bin = int(max(10000, meshes._F / 5))
|
||||||
|
|
||||||
# pyre-fixme[16]: `_RasterizeFaceVerts` has no attribute `apply`.
|
|
||||||
pix_to_face, zbuf, barycentric_coords, dists = _RasterizeFaceVerts.apply(
|
pix_to_face, zbuf, barycentric_coords, dists = _RasterizeFaceVerts.apply(
|
||||||
face_verts,
|
face_verts,
|
||||||
mesh_to_face_first_idx,
|
mesh_to_face_first_idx,
|
||||||
|
@ -628,7 +628,6 @@ class Renderer(torch.nn.Module):
|
|||||||
max_depth / focal_lengths.min().item(),
|
max_depth / focal_lengths.min().item(),
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
# pyre-fixme[16]: `_Render` has no attribute `apply`.
|
|
||||||
ret_res = _Render.apply(
|
ret_res = _Render.apply(
|
||||||
vert_pos,
|
vert_pos,
|
||||||
vert_col,
|
vert_col,
|
||||||
|
@ -128,7 +128,6 @@ def rasterize_points(
|
|||||||
|
|
||||||
# Function.apply cannot take keyword args, so we handle defaults in this
|
# Function.apply cannot take keyword args, so we handle defaults in this
|
||||||
# wrapper and call apply with positional args only
|
# wrapper and call apply with positional args only
|
||||||
# pyre-fixme[16]: `_RasterizePoints` has no attribute `apply`.
|
|
||||||
return _RasterizePoints.apply(
|
return _RasterizePoints.apply(
|
||||||
points_packed,
|
points_packed,
|
||||||
cloud_to_packed_first_idx,
|
cloud_to_packed_first_idx,
|
||||||
|
Loading…
x
Reference in New Issue
Block a user