mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
ignore cuda for cpu only installation
Summary: Added if `WITH_CUDA` checks for points/mesh rasterization. If installing on cpu only then this causes `Undefined symbol` errors when trying to import pytorch3d. We had these checks for all the other cuda files but not the rasterization files. Thanks ppwwyyxx for the tip! Reviewed By: ppwwyyxx, gkioxari Differential Revision: D19801495 fbshipit-source-id: 20e7adccfdb33ac731c00a89414b2beaf0a35529
This commit is contained in:
parent
ca588a59d7
commit
dcb094800f
@ -19,6 +19,7 @@ RasterizeMeshesNaiveCpu(
|
||||
int faces_per_pixel,
|
||||
bool perspective_correct);
|
||||
|
||||
#ifdef WITH_CUDA
|
||||
std::tuple<at::Tensor, at::Tensor, at::Tensor, at::Tensor>
|
||||
RasterizeMeshesNaiveCuda(
|
||||
const at::Tensor& face_verts,
|
||||
@ -28,7 +29,7 @@ RasterizeMeshesNaiveCuda(
|
||||
float blur_radius,
|
||||
int num_closest,
|
||||
bool perspective_correct);
|
||||
|
||||
#endif
|
||||
// Forward pass for rasterizing a batch of meshes.
|
||||
//
|
||||
// Args:
|
||||
@ -82,6 +83,7 @@ RasterizeMeshesNaive(
|
||||
bool perspective_correct) {
|
||||
// TODO: Better type checking.
|
||||
if (face_verts.type().is_cuda()) {
|
||||
#ifdef WITH_CUDA
|
||||
return RasterizeMeshesNaiveCuda(
|
||||
face_verts,
|
||||
mesh_to_face_first_idx,
|
||||
@ -90,6 +92,9 @@ RasterizeMeshesNaive(
|
||||
blur_radius,
|
||||
faces_per_pixel,
|
||||
perspective_correct);
|
||||
#else
|
||||
AT_ERROR("Not compiled with GPU support");
|
||||
#endif
|
||||
} else {
|
||||
return RasterizeMeshesNaiveCpu(
|
||||
face_verts,
|
||||
@ -114,6 +119,7 @@ torch::Tensor RasterizeMeshesBackwardCpu(
|
||||
const torch::Tensor& grad_dists,
|
||||
bool perspective_correct);
|
||||
|
||||
#ifdef WITH_CUDA
|
||||
torch::Tensor RasterizeMeshesBackwardCuda(
|
||||
const torch::Tensor& face_verts,
|
||||
const torch::Tensor& pix_to_face,
|
||||
@ -121,6 +127,7 @@ torch::Tensor RasterizeMeshesBackwardCuda(
|
||||
const torch::Tensor& grad_zbuf,
|
||||
const torch::Tensor& grad_dists,
|
||||
bool perspective_correct);
|
||||
#endif
|
||||
|
||||
// Args:
|
||||
// face_verts: float32 Tensor of shape (F, 3, 3) (from forward pass) giving
|
||||
@ -154,6 +161,7 @@ torch::Tensor RasterizeMeshesBackward(
|
||||
const torch::Tensor& grad_dists,
|
||||
bool perspective_correct) {
|
||||
if (face_verts.type().is_cuda()) {
|
||||
#ifdef WITH_CUDA
|
||||
return RasterizeMeshesBackwardCuda(
|
||||
face_verts,
|
||||
pix_to_face,
|
||||
@ -161,6 +169,9 @@ torch::Tensor RasterizeMeshesBackward(
|
||||
grad_bary,
|
||||
grad_dists,
|
||||
perspective_correct);
|
||||
#else
|
||||
AT_ERROR("Not compiled with GPU support");
|
||||
#endif
|
||||
} else {
|
||||
return RasterizeMeshesBackwardCpu(
|
||||
face_verts,
|
||||
@ -185,6 +196,7 @@ torch::Tensor RasterizeMeshesCoarseCpu(
|
||||
int bin_size,
|
||||
int max_faces_per_bin);
|
||||
|
||||
#ifdef WITH_CUDA
|
||||
torch::Tensor RasterizeMeshesCoarseCuda(
|
||||
const torch::Tensor& face_verts,
|
||||
const torch::Tensor& mesh_to_face_first_idx,
|
||||
@ -193,7 +205,7 @@ torch::Tensor RasterizeMeshesCoarseCuda(
|
||||
float blur_radius,
|
||||
int bin_size,
|
||||
int max_faces_per_bin);
|
||||
|
||||
#endif
|
||||
// Args:
|
||||
// face_verts: Tensor of shape (F, 3, 3) giving (packed) vertex positions for
|
||||
// faces in all the meshes in the batch. Concretely,
|
||||
@ -225,6 +237,7 @@ torch::Tensor RasterizeMeshesCoarse(
|
||||
int bin_size,
|
||||
int max_faces_per_bin) {
|
||||
if (face_verts.type().is_cuda()) {
|
||||
#ifdef WITH_CUDA
|
||||
return RasterizeMeshesCoarseCuda(
|
||||
face_verts,
|
||||
mesh_to_face_first_idx,
|
||||
@ -233,6 +246,9 @@ torch::Tensor RasterizeMeshesCoarse(
|
||||
blur_radius,
|
||||
bin_size,
|
||||
max_faces_per_bin);
|
||||
#else
|
||||
AT_ERROR("Not compiled with GPU support");
|
||||
#endif
|
||||
} else {
|
||||
return RasterizeMeshesCoarseCpu(
|
||||
face_verts,
|
||||
@ -249,6 +265,7 @@ torch::Tensor RasterizeMeshesCoarse(
|
||||
// * FINE RASTERIZATION *
|
||||
// ****************************************************************************
|
||||
|
||||
#ifdef WITH_CUDA
|
||||
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>
|
||||
RasterizeMeshesFineCuda(
|
||||
const torch::Tensor& face_verts,
|
||||
@ -258,7 +275,7 @@ RasterizeMeshesFineCuda(
|
||||
int bin_size,
|
||||
int faces_per_pixel,
|
||||
bool perspective_correct);
|
||||
|
||||
#endif
|
||||
// Args:
|
||||
// face_verts: Tensor of shape (F, 3, 3) giving (packed) vertex positions for
|
||||
// faces in all the meshes in the batch. Concretely,
|
||||
@ -306,6 +323,7 @@ RasterizeMeshesFine(
|
||||
int faces_per_pixel,
|
||||
bool perspective_correct) {
|
||||
if (face_verts.type().is_cuda()) {
|
||||
#ifdef WITH_CUDA
|
||||
return RasterizeMeshesFineCuda(
|
||||
face_verts,
|
||||
bin_faces,
|
||||
@ -314,6 +332,9 @@ RasterizeMeshesFine(
|
||||
bin_size,
|
||||
faces_per_pixel,
|
||||
perspective_correct);
|
||||
#else
|
||||
AT_ERROR("Not compiled with GPU support");
|
||||
#endif
|
||||
} else {
|
||||
AT_ERROR("NOT IMPLEMENTED");
|
||||
}
|
||||
|
@ -15,13 +15,14 @@ std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> RasterizePointsNaiveCpu(
|
||||
const float radius,
|
||||
const int points_per_pixel);
|
||||
|
||||
#ifdef WITH_CUDA
|
||||
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor>
|
||||
RasterizePointsNaiveCuda(
|
||||
const torch::Tensor& points,
|
||||
const int image_size,
|
||||
const float radius,
|
||||
const int points_per_pixel);
|
||||
|
||||
#endif
|
||||
// Naive (forward) pointcloud rasterization: For each pixel, for each point,
|
||||
// check whether that point hits the pixel.
|
||||
//
|
||||
@ -47,8 +48,12 @@ std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> RasterizePointsNaive(
|
||||
const float radius,
|
||||
const int points_per_pixel) {
|
||||
if (points.type().is_cuda()) {
|
||||
#ifdef WITH_CUDA
|
||||
return RasterizePointsNaiveCuda(
|
||||
points, image_size, radius, points_per_pixel);
|
||||
#else
|
||||
AT_ERROR("Not compiled with GPU support");
|
||||
#endif
|
||||
} else {
|
||||
return RasterizePointsNaiveCpu(
|
||||
points, image_size, radius, points_per_pixel);
|
||||
@ -66,13 +71,14 @@ torch::Tensor RasterizePointsCoarseCpu(
|
||||
const int bin_size,
|
||||
const int max_points_per_bin);
|
||||
|
||||
#ifdef WITH_CUDA
|
||||
torch::Tensor RasterizePointsCoarseCuda(
|
||||
const torch::Tensor& points,
|
||||
const int image_size,
|
||||
const float radius,
|
||||
const int bin_size,
|
||||
const int max_points_per_bin);
|
||||
|
||||
#endif
|
||||
// Args:
|
||||
// points: Tensor of shape (N, P, 3)
|
||||
// radius: Radius of points to rasterize (in NDC units)
|
||||
@ -91,8 +97,12 @@ torch::Tensor RasterizePointsCoarse(
|
||||
const int bin_size,
|
||||
const int max_points_per_bin) {
|
||||
if (points.type().is_cuda()) {
|
||||
#ifdef WITH_CUDA
|
||||
return RasterizePointsCoarseCuda(
|
||||
points, image_size, radius, bin_size, max_points_per_bin);
|
||||
#else
|
||||
AT_ERROR("Not compiled with GPU support");
|
||||
#endif
|
||||
} else {
|
||||
return RasterizePointsCoarseCpu(
|
||||
points, image_size, radius, bin_size, max_points_per_bin);
|
||||
@ -103,6 +113,7 @@ torch::Tensor RasterizePointsCoarse(
|
||||
// * FINE RASTERIZATION *
|
||||
// ****************************************************************************
|
||||
|
||||
#ifdef WITH_CUDA
|
||||
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> RasterizePointsFineCuda(
|
||||
const torch::Tensor& points,
|
||||
const torch::Tensor& bin_points,
|
||||
@ -110,7 +121,7 @@ std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> RasterizePointsFineCuda(
|
||||
const float radius,
|
||||
const int bin_size,
|
||||
const int points_per_pixel);
|
||||
|
||||
#endif
|
||||
// Args:
|
||||
// points: float32 Tensor of shape (N, P, 3)
|
||||
// bin_points: int32 Tensor of shape (N, B, B, M) giving the indices of points
|
||||
@ -137,8 +148,12 @@ std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> RasterizePointsFine(
|
||||
const int bin_size,
|
||||
const int points_per_pixel) {
|
||||
if (points.type().is_cuda()) {
|
||||
#ifdef WITH_CUDA
|
||||
return RasterizePointsFineCuda(
|
||||
points, bin_points, image_size, radius, bin_size, points_per_pixel);
|
||||
#else
|
||||
AT_ERROR("Not compiled with GPU support");
|
||||
#endif
|
||||
} else {
|
||||
AT_ERROR("NOT IMPLEMENTED");
|
||||
}
|
||||
@ -154,12 +169,13 @@ torch::Tensor RasterizePointsBackwardCpu(
|
||||
const torch::Tensor& grad_zbuf,
|
||||
const torch::Tensor& grad_dists);
|
||||
|
||||
#ifdef WITH_CUDA
|
||||
torch::Tensor RasterizePointsBackwardCuda(
|
||||
const torch::Tensor& points,
|
||||
const torch::Tensor& idxs,
|
||||
const torch::Tensor& grad_zbuf,
|
||||
const torch::Tensor& grad_dists);
|
||||
|
||||
#endif
|
||||
// Args:
|
||||
// points: float32 Tensor of shape (N, P, 3)
|
||||
// idxs: int32 Tensor of shape (N, H, W, K) (from forward pass)
|
||||
@ -178,7 +194,11 @@ torch::Tensor RasterizePointsBackward(
|
||||
const torch::Tensor& grad_zbuf,
|
||||
const torch::Tensor& grad_dists) {
|
||||
if (points.type().is_cuda()) {
|
||||
#ifdef WITH_CUDA
|
||||
return RasterizePointsBackwardCuda(points, idxs, grad_zbuf, grad_dists);
|
||||
#else
|
||||
AT_ERROR("Not compiled with GPU support");
|
||||
#endif
|
||||
} else {
|
||||
return RasterizePointsBackwardCpu(points, idxs, grad_zbuf, grad_dists);
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user