mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-20 22:30:35 +08:00
Initial commit
fbshipit-source-id: ad58e416e3ceeca85fae0583308968d04e78fe0d
This commit is contained in:
200
tests/test_so3.py
Normal file
200
tests/test_so3.py
Normal file
@@ -0,0 +1,200 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
||||
|
||||
|
||||
import numpy as np
|
||||
import unittest
|
||||
import torch
|
||||
|
||||
from pytorch3d.transforms.so3 import (
|
||||
hat,
|
||||
so3_exponential_map,
|
||||
so3_log_map,
|
||||
so3_relative_angle,
|
||||
)
|
||||
|
||||
|
||||
class TestSO3(unittest.TestCase):
|
||||
def setUp(self) -> None:
|
||||
super().setUp()
|
||||
torch.manual_seed(42)
|
||||
np.random.seed(42)
|
||||
|
||||
@staticmethod
|
||||
def init_log_rot(batch_size: int = 10):
|
||||
"""
|
||||
Initialize a list of `batch_size` 3-dimensional vectors representing
|
||||
randomly generated logarithms of rotation matrices.
|
||||
"""
|
||||
device = torch.device("cuda:0")
|
||||
log_rot = torch.randn(
|
||||
(batch_size, 3), dtype=torch.float32, device=device
|
||||
)
|
||||
return log_rot
|
||||
|
||||
@staticmethod
|
||||
def init_rot(batch_size: int = 10):
|
||||
"""
|
||||
Randomly generate a batch of `batch_size` 3x3 rotation matrices.
|
||||
"""
|
||||
device = torch.device("cuda:0")
|
||||
|
||||
# TODO(dnovotny): replace with random_rotation from random_rotation.py
|
||||
rot = []
|
||||
for _ in range(batch_size):
|
||||
r = torch.qr(torch.randn((3, 3), device=device))[0]
|
||||
f = torch.randint(2, (3,), device=device, dtype=torch.float32)
|
||||
if f.sum() % 2 == 0:
|
||||
f = 1 - f
|
||||
rot.append(r * (2 * f - 1).float())
|
||||
rot = torch.stack(rot)
|
||||
|
||||
return rot
|
||||
|
||||
def test_determinant(self):
|
||||
"""
|
||||
Tests whether the determinants of 3x3 rotation matrices produced
|
||||
by `so3_exponential_map` are (almost) equal to 1.
|
||||
"""
|
||||
log_rot = TestSO3.init_log_rot(batch_size=30)
|
||||
Rs = so3_exponential_map(log_rot)
|
||||
for R in Rs:
|
||||
det = np.linalg.det(R.cpu().numpy())
|
||||
self.assertAlmostEqual(float(det), 1.0, 5)
|
||||
|
||||
def test_cross(self):
|
||||
"""
|
||||
For a pair of randomly generated 3-dimensional vectors `a` and `b`,
|
||||
tests whether a matrix product of `hat(a)` and `b` equals the result
|
||||
of a cross product between `a` and `b`.
|
||||
"""
|
||||
device = torch.device("cuda:0")
|
||||
a, b = torch.randn((2, 100, 3), dtype=torch.float32, device=device)
|
||||
hat_a = hat(a)
|
||||
cross = torch.bmm(hat_a, b[:, :, None])[:, :, 0]
|
||||
torch_cross = torch.cross(a, b, dim=1)
|
||||
max_df = (cross - torch_cross).abs().max()
|
||||
self.assertAlmostEqual(float(max_df), 0.0, 5)
|
||||
|
||||
def test_bad_so3_input_value_err(self):
|
||||
"""
|
||||
Tests whether `so3_exponential_map` and `so3_log_map` correctly return
|
||||
a ValueError if called with an argument of incorrect shape or, in case
|
||||
of `so3_exponential_map`, unexpected trace.
|
||||
"""
|
||||
device = torch.device("cuda:0")
|
||||
log_rot = torch.randn(size=[5, 4], device=device)
|
||||
with self.assertRaises(ValueError) as err:
|
||||
so3_exponential_map(log_rot)
|
||||
self.assertTrue(
|
||||
"Input tensor shape has to be Nx3." in str(err.exception)
|
||||
)
|
||||
|
||||
rot = torch.randn(size=[5, 3, 5], device=device)
|
||||
with self.assertRaises(ValueError) as err:
|
||||
so3_log_map(rot)
|
||||
self.assertTrue(
|
||||
"Input has to be a batch of 3x3 Tensors." in str(err.exception)
|
||||
)
|
||||
|
||||
# trace of rot definitely bigger than 3 or smaller than -1
|
||||
rot = torch.cat(
|
||||
(
|
||||
torch.rand(size=[5, 3, 3], device=device) + 4.0,
|
||||
torch.rand(size=[5, 3, 3], device=device) - 3.0,
|
||||
)
|
||||
)
|
||||
with self.assertRaises(ValueError) as err:
|
||||
so3_log_map(rot)
|
||||
self.assertTrue(
|
||||
"A matrix has trace outside valid range [-1-eps,3+eps]."
|
||||
in str(err.exception)
|
||||
)
|
||||
|
||||
def test_so3_exp_singularity(self, batch_size: int = 100):
|
||||
"""
|
||||
Tests whether the `so3_exponential_map` is robust to the input vectors
|
||||
the norms of which are close to the numerically unstable region
|
||||
(vectors with low l2-norms).
|
||||
"""
|
||||
# generate random log-rotations with a tiny angle
|
||||
log_rot = TestSO3.init_log_rot(batch_size=batch_size)
|
||||
log_rot_small = log_rot * 1e-6
|
||||
R = so3_exponential_map(log_rot_small)
|
||||
# tests whether all outputs are finite
|
||||
R_sum = float(R.sum())
|
||||
self.assertEqual(R_sum, R_sum)
|
||||
|
||||
def test_so3_log_singularity(self, batch_size: int = 100):
|
||||
"""
|
||||
Tests whether the `so3_log_map` is robust to the input matrices
|
||||
who's rotation angles are close to the numerically unstable region
|
||||
(i.e. matrices with low rotation angles).
|
||||
"""
|
||||
# generate random rotations with a tiny angle
|
||||
device = torch.device("cuda:0")
|
||||
r = torch.eye(3, device=device)[None].repeat((batch_size, 1, 1))
|
||||
r += torch.randn((batch_size, 3, 3), device=device) * 1e-3
|
||||
r = torch.stack([torch.qr(r_)[0] for r_ in r])
|
||||
# the log of the rotation matrix r
|
||||
r_log = so3_log_map(r)
|
||||
# tests whether all outputs are finite
|
||||
r_sum = float(r_log.sum())
|
||||
self.assertEqual(r_sum, r_sum)
|
||||
|
||||
def test_so3_log_to_exp_to_log(self, batch_size: int = 100):
|
||||
"""
|
||||
Check that `so3_log_map(so3_exponential_map(log_rot))==log_rot` for
|
||||
a randomly generated batch of rotation matrix logarithms `log_rot`.
|
||||
"""
|
||||
log_rot = TestSO3.init_log_rot(batch_size=batch_size)
|
||||
log_rot_ = so3_log_map(so3_exponential_map(log_rot))
|
||||
max_df = (log_rot - log_rot_).abs().max()
|
||||
self.assertAlmostEqual(float(max_df), 0.0, 4)
|
||||
|
||||
def test_so3_exp_to_log_to_exp(self, batch_size: int = 100):
|
||||
"""
|
||||
Check that `so3_exponential_map(so3_log_map(R))==R` for
|
||||
a batch of randomly generated rotation matrices `R`.
|
||||
"""
|
||||
rot = TestSO3.init_rot(batch_size=batch_size)
|
||||
rot_ = so3_exponential_map(so3_log_map(rot))
|
||||
angles = so3_relative_angle(rot, rot_)
|
||||
max_angle = angles.max()
|
||||
# a lot of precision lost here :(
|
||||
# TODO: fix this test??
|
||||
self.assertTrue(np.allclose(float(max_angle), 0.0, atol=0.1))
|
||||
|
||||
def test_so3_cos_angle(self, batch_size: int = 100):
|
||||
"""
|
||||
Check that `so3_relative_angle(R1, R2, cos_angle=False).cos()`
|
||||
is the same as `so3_relative_angle(R1, R2, cos_angle=True)`
|
||||
batches of randomly generated rotation matrices `R1` and `R2`.
|
||||
"""
|
||||
rot1 = TestSO3.init_rot(batch_size=batch_size)
|
||||
rot2 = TestSO3.init_rot(batch_size=batch_size)
|
||||
angles = so3_relative_angle(rot1, rot2, cos_angle=False).cos()
|
||||
angles_ = so3_relative_angle(rot1, rot2, cos_angle=True)
|
||||
self.assertTrue(torch.allclose(angles, angles_))
|
||||
|
||||
@staticmethod
|
||||
def so3_expmap(batch_size: int = 10):
|
||||
log_rot = TestSO3.init_log_rot(batch_size=batch_size)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
def compute_rots():
|
||||
so3_exponential_map(log_rot)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
return compute_rots
|
||||
|
||||
@staticmethod
|
||||
def so3_logmap(batch_size: int = 10):
|
||||
log_rot = TestSO3.init_rot(batch_size=batch_size)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
def compute_logs():
|
||||
so3_log_map(log_rot)
|
||||
torch.cuda.synchronize()
|
||||
|
||||
return compute_logs
|
||||
Reference in New Issue
Block a user