Address black + isort fbsource linter warnings

Summary: Address black + isort fbsource linter warnings from D20558374 (previous diff)

Reviewed By: nikhilaravi

Differential Revision: D20558373

fbshipit-source-id: d3607de4a01fb24c0d5269634563a7914bddf1c8
This commit is contained in:
Patrick Labatut
2020-03-29 14:46:33 -07:00
committed by Facebook GitHub Bot
parent eb512ffde3
commit d57daa6f85
110 changed files with 705 additions and 1850 deletions

View File

@@ -3,8 +3,8 @@
import math
import unittest
import torch
import torch
from pytorch3d.transforms.so3 import so3_exponential_map
from pytorch3d.transforms.transform3d import (
Rotate,
@@ -18,9 +18,7 @@ from pytorch3d.transforms.transform3d import (
class TestTransform(unittest.TestCase):
def test_to(self):
tr = Translate(torch.FloatTensor([[1.0, 2.0, 3.0]]))
R = torch.FloatTensor(
[[0.0, 1.0, 0.0], [0.0, 0.0, 1.0], [1.0, 0.0, 0.0]]
)
R = torch.FloatTensor([[0.0, 1.0, 0.0], [0.0, 0.0, 1.0], [1.0, 0.0, 0.0]])
R = Rotate(R)
t = Transform3d().compose(R, tr)
for _ in range(3):
@@ -36,9 +34,7 @@ class TestTransform(unittest.TestCase):
the same as composition of clones of translation and rotation.
"""
tr = Translate(torch.FloatTensor([[1.0, 2.0, 3.0]]))
R = torch.FloatTensor(
[[0.0, 1.0, 0.0], [0.0, 0.0, 1.0], [1.0, 0.0, 0.0]]
)
R = torch.FloatTensor([[0.0, 1.0, 0.0], [0.0, 0.0, 1.0], [1.0, 0.0, 0.0]])
R = Rotate(R)
# check that the _matrix property of clones of
@@ -63,9 +59,9 @@ class TestTransform(unittest.TestCase):
def test_translate(self):
t = Transform3d().translate(1, 2, 3)
points = torch.tensor(
[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.5, 0.5, 0.0]]
).view(1, 3, 3)
points = torch.tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.5, 0.5, 0.0]]).view(
1, 3, 3
)
normals = torch.tensor(
[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [1.0, 1.0, 0.0]]
).view(1, 3, 3)
@@ -82,9 +78,9 @@ class TestTransform(unittest.TestCase):
def test_scale(self):
t = Transform3d().scale(2.0).scale(0.5, 0.25, 1.0)
points = torch.tensor(
[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.5, 0.5, 0.0]]
).view(1, 3, 3)
points = torch.tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.5, 0.5, 0.0]]).view(
1, 3, 3
)
normals = torch.tensor(
[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [1.0, 1.0, 0.0]]
).view(1, 3, 3)
@@ -101,9 +97,9 @@ class TestTransform(unittest.TestCase):
def test_scale_translate(self):
t = Transform3d().scale(2, 1, 3).translate(1, 2, 3)
points = torch.tensor(
[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.5, 0.5, 0.0]]
).view(1, 3, 3)
points = torch.tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.5, 0.5, 0.0]]).view(
1, 3, 3
)
normals = torch.tensor(
[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [1.0, 1.0, 0.0]]
).view(1, 3, 3)
@@ -120,9 +116,9 @@ class TestTransform(unittest.TestCase):
def test_rotate_axis_angle(self):
t = Transform3d().rotate_axis_angle(90.0, axis="Z")
points = torch.tensor(
[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 1.0]]
).view(1, 3, 3)
points = torch.tensor([[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 1.0]]).view(
1, 3, 3
)
normals = torch.tensor(
[[1.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 0.0, 0.0]]
).view(1, 3, 3)
@@ -194,9 +190,7 @@ class TestTransform(unittest.TestCase):
t_ = Rotate(
so3_exponential_map(
torch.randn(
(batch_size, 3),
dtype=torch.float32,
device=device,
(batch_size, 3), dtype=torch.float32, device=device
)
),
device=device,
@@ -717,9 +711,7 @@ class TestRotate(unittest.TestCase):
def test_inverse(self, batch_size=5):
device = torch.device("cuda:0")
log_rot = torch.randn(
(batch_size, 3), dtype=torch.float32, device=device
)
log_rot = torch.randn((batch_size, 3), dtype=torch.float32, device=device)
R = so3_exponential_map(log_rot)
t = Rotate(R)
im = t.inverse()._matrix
@@ -749,9 +741,7 @@ class TestRotateAxisAngle(unittest.TestCase):
transformed_points = t.transform_points(points)
expected_points = torch.tensor([0.0, 0.0, 1.0])
self.assertTrue(
torch.allclose(
transformed_points.squeeze(), expected_points, atol=1e-7
)
torch.allclose(transformed_points.squeeze(), expected_points, atol=1e-7)
)
self.assertTrue(torch.allclose(t._matrix, matrix))
@@ -775,9 +765,7 @@ class TestRotateAxisAngle(unittest.TestCase):
transformed_points = t.transform_points(points)
expected_points = torch.tensor([0.0, 0.0, 1.0])
self.assertTrue(
torch.allclose(
transformed_points.squeeze(), expected_points, atol=1e-7
)
torch.allclose(transformed_points.squeeze(), expected_points, atol=1e-7)
)
self.assertTrue(torch.allclose(t._matrix, matrix, atol=1e-7))
@@ -835,9 +823,7 @@ class TestRotateAxisAngle(unittest.TestCase):
transformed_points = t.transform_points(points)
expected_points = torch.tensor([0.0, 0.0, -1.0])
self.assertTrue(
torch.allclose(
transformed_points.squeeze(), expected_points, atol=1e-7
)
torch.allclose(transformed_points.squeeze(), expected_points, atol=1e-7)
)
self.assertTrue(torch.allclose(t._matrix, matrix, atol=1e-7))
@@ -866,9 +852,7 @@ class TestRotateAxisAngle(unittest.TestCase):
transformed_points = t.transform_points(points)
expected_points = torch.tensor([0.0, 0.0, -1.0])
self.assertTrue(
torch.allclose(
transformed_points.squeeze(), expected_points, atol=1e-7
)
torch.allclose(transformed_points.squeeze(), expected_points, atol=1e-7)
)
self.assertTrue(torch.allclose(t._matrix, matrix, atol=1e-7))
@@ -923,9 +907,7 @@ class TestRotateAxisAngle(unittest.TestCase):
transformed_points = t.transform_points(points)
expected_points = torch.tensor([0.0, 1.0, 0.0])
self.assertTrue(
torch.allclose(
transformed_points.squeeze(), expected_points, atol=1e-7
)
torch.allclose(transformed_points.squeeze(), expected_points, atol=1e-7)
)
self.assertTrue(torch.allclose(t._matrix, matrix, atol=1e-7))
@@ -949,9 +931,7 @@ class TestRotateAxisAngle(unittest.TestCase):
transformed_points = t.transform_points(points)
expected_points = torch.tensor([0.0, 1.0, 0.0])
self.assertTrue(
torch.allclose(
transformed_points.squeeze(), expected_points, atol=1e-7
)
torch.allclose(transformed_points.squeeze(), expected_points, atol=1e-7)
)
self.assertTrue(torch.allclose(t._matrix, matrix, atol=1e-7))