mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-20 22:30:35 +08:00
Address black + isort fbsource linter warnings
Summary: Address black + isort fbsource linter warnings from D20558374 (previous diff) Reviewed By: nikhilaravi Differential Revision: D20558373 fbshipit-source-id: d3607de4a01fb24c0d5269634563a7914bddf1c8
This commit is contained in:
committed by
Facebook GitHub Bot
parent
eb512ffde3
commit
d57daa6f85
@@ -1,13 +1,12 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
||||
|
||||
import unittest
|
||||
import torch
|
||||
|
||||
import torch
|
||||
from common_testing import TestCaseMixin
|
||||
from pytorch3d.ops import packed_to_padded, padded_to_packed
|
||||
from pytorch3d.structures.meshes import Meshes
|
||||
|
||||
from common_testing import TestCaseMixin
|
||||
|
||||
|
||||
class TestPackedToPadded(TestCaseMixin, unittest.TestCase):
|
||||
def setUp(self) -> None:
|
||||
@@ -25,9 +24,7 @@ class TestPackedToPadded(TestCaseMixin, unittest.TestCase):
|
||||
verts_list = []
|
||||
faces_list = []
|
||||
for _ in range(num_meshes):
|
||||
verts = torch.rand(
|
||||
(num_verts, 3), dtype=torch.float32, device=device
|
||||
)
|
||||
verts = torch.rand((num_verts, 3), dtype=torch.float32, device=device)
|
||||
faces = torch.randint(
|
||||
num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
|
||||
)
|
||||
@@ -47,9 +44,7 @@ class TestPackedToPadded(TestCaseMixin, unittest.TestCase):
|
||||
if D == 0:
|
||||
inputs_padded = torch.zeros((num_meshes, max_size), device=device)
|
||||
else:
|
||||
inputs_padded = torch.zeros(
|
||||
(num_meshes, max_size, D), device=device
|
||||
)
|
||||
inputs_padded = torch.zeros((num_meshes, max_size, D), device=device)
|
||||
for m in range(num_meshes):
|
||||
s = first_idxs[m]
|
||||
if m == num_meshes - 1:
|
||||
@@ -92,13 +87,9 @@ class TestPackedToPadded(TestCaseMixin, unittest.TestCase):
|
||||
max_faces = meshes.num_faces_per_mesh().max().item()
|
||||
|
||||
if D == 0:
|
||||
values = torch.rand(
|
||||
(faces.shape[0],), device=device, requires_grad=True
|
||||
)
|
||||
values = torch.rand((faces.shape[0],), device=device, requires_grad=True)
|
||||
else:
|
||||
values = torch.rand(
|
||||
(faces.shape[0], D), device=device, requires_grad=True
|
||||
)
|
||||
values = torch.rand((faces.shape[0], D), device=device, requires_grad=True)
|
||||
values_torch = values.detach().clone()
|
||||
values_torch.requires_grad = True
|
||||
values_padded = packed_to_padded(
|
||||
@@ -120,10 +111,7 @@ class TestPackedToPadded(TestCaseMixin, unittest.TestCase):
|
||||
values_padded_torch.backward(grad_inputs)
|
||||
grad_outputs_torch1 = values_torch.grad
|
||||
grad_outputs_torch2 = TestPackedToPadded.padded_to_packed_python(
|
||||
grad_inputs,
|
||||
mesh_to_faces_packed_first_idx,
|
||||
values.size(0),
|
||||
device=device,
|
||||
grad_inputs, mesh_to_faces_packed_first_idx, values.size(0), device=device
|
||||
)
|
||||
self.assertClose(grad_outputs, grad_outputs_torch1)
|
||||
self.assertClose(grad_outputs, grad_outputs_torch2)
|
||||
@@ -165,9 +153,7 @@ class TestPackedToPadded(TestCaseMixin, unittest.TestCase):
|
||||
values_torch = values.detach().clone()
|
||||
values_torch.requires_grad = True
|
||||
values_packed = padded_to_packed(
|
||||
values,
|
||||
mesh_to_faces_packed_first_idx,
|
||||
num_faces_per_mesh.sum().item(),
|
||||
values, mesh_to_faces_packed_first_idx, num_faces_per_mesh.sum().item()
|
||||
)
|
||||
values_packed_torch = TestPackedToPadded.padded_to_packed_python(
|
||||
values_torch,
|
||||
@@ -180,9 +166,7 @@ class TestPackedToPadded(TestCaseMixin, unittest.TestCase):
|
||||
|
||||
# check backward
|
||||
if D == 0:
|
||||
grad_inputs = torch.rand(
|
||||
(num_faces_per_mesh.sum().item()), device=device
|
||||
)
|
||||
grad_inputs = torch.rand((num_faces_per_mesh.sum().item()), device=device)
|
||||
else:
|
||||
grad_inputs = torch.rand(
|
||||
(num_faces_per_mesh.sum().item(), D), device=device
|
||||
@@ -192,10 +176,7 @@ class TestPackedToPadded(TestCaseMixin, unittest.TestCase):
|
||||
values_packed_torch.backward(grad_inputs)
|
||||
grad_outputs_torch1 = values_torch.grad
|
||||
grad_outputs_torch2 = TestPackedToPadded.packed_to_padded_python(
|
||||
grad_inputs,
|
||||
mesh_to_faces_packed_first_idx,
|
||||
values.size(1),
|
||||
device=device,
|
||||
grad_inputs, mesh_to_faces_packed_first_idx, values.size(1), device=device
|
||||
)
|
||||
self.assertClose(grad_outputs, grad_outputs_torch1)
|
||||
self.assertClose(grad_outputs, grad_outputs_torch2)
|
||||
@@ -219,34 +200,24 @@ class TestPackedToPadded(TestCaseMixin, unittest.TestCase):
|
||||
self._test_padded_to_packed_helper(16, "cuda:0")
|
||||
|
||||
def test_invalid_inputs_shapes(self, device="cuda:0"):
|
||||
with self.assertRaisesRegex(
|
||||
ValueError, "input can only be 2-dimensional."
|
||||
):
|
||||
with self.assertRaisesRegex(ValueError, "input can only be 2-dimensional."):
|
||||
values = torch.rand((100, 50, 2), device=device)
|
||||
first_idxs = torch.tensor([0, 80], dtype=torch.int64, device=device)
|
||||
packed_to_padded(values, first_idxs, 100)
|
||||
|
||||
with self.assertRaisesRegex(
|
||||
ValueError, "input can only be 3-dimensional."
|
||||
):
|
||||
with self.assertRaisesRegex(ValueError, "input can only be 3-dimensional."):
|
||||
values = torch.rand((100,), device=device)
|
||||
first_idxs = torch.tensor([0, 80], dtype=torch.int64, device=device)
|
||||
padded_to_packed(values, first_idxs, 20)
|
||||
|
||||
with self.assertRaisesRegex(
|
||||
ValueError, "input can only be 3-dimensional."
|
||||
):
|
||||
with self.assertRaisesRegex(ValueError, "input can only be 3-dimensional."):
|
||||
values = torch.rand((100, 50, 2, 2), device=device)
|
||||
first_idxs = torch.tensor([0, 80], dtype=torch.int64, device=device)
|
||||
padded_to_packed(values, first_idxs, 20)
|
||||
|
||||
@staticmethod
|
||||
def packed_to_padded_with_init(
|
||||
num_meshes: int,
|
||||
num_verts: int,
|
||||
num_faces: int,
|
||||
num_d: int,
|
||||
device: str = "cpu",
|
||||
num_meshes: int, num_verts: int, num_faces: int, num_d: int, device: str = "cpu"
|
||||
):
|
||||
meshes = TestPackedToPadded.init_meshes(
|
||||
num_meshes, num_verts, num_faces, device
|
||||
@@ -268,11 +239,7 @@ class TestPackedToPadded(TestCaseMixin, unittest.TestCase):
|
||||
|
||||
@staticmethod
|
||||
def packed_to_padded_with_init_torch(
|
||||
num_meshes: int,
|
||||
num_verts: int,
|
||||
num_faces: int,
|
||||
num_d: int,
|
||||
device: str = "cpu",
|
||||
num_meshes: int, num_verts: int, num_faces: int, num_d: int, device: str = "cpu"
|
||||
):
|
||||
meshes = TestPackedToPadded.init_meshes(
|
||||
num_meshes, num_verts, num_faces, device
|
||||
|
||||
Reference in New Issue
Block a user