mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-20 22:30:35 +08:00
Address black + isort fbsource linter warnings
Summary: Address black + isort fbsource linter warnings from D20558374 (previous diff) Reviewed By: nikhilaravi Differential Revision: D20558373 fbshipit-source-id: d3607de4a01fb24c0d5269634563a7914bddf1c8
This commit is contained in:
committed by
Facebook GitHub Bot
parent
eb512ffde3
commit
d57daa6f85
@@ -2,8 +2,8 @@
|
||||
|
||||
|
||||
import unittest
|
||||
import torch
|
||||
|
||||
import torch
|
||||
from pytorch3d.loss.mesh_normal_consistency import mesh_normal_consistency
|
||||
from pytorch3d.structures.meshes import Meshes
|
||||
from pytorch3d.utils.ico_sphere import ico_sphere
|
||||
@@ -33,17 +33,14 @@ class TestMeshNormalConsistency(unittest.TestCase):
|
||||
return faces
|
||||
|
||||
@staticmethod
|
||||
def init_meshes(
|
||||
num_meshes: int = 10, num_verts: int = 1000, num_faces: int = 3000
|
||||
):
|
||||
def init_meshes(num_meshes: int = 10, num_verts: int = 1000, num_faces: int = 3000):
|
||||
device = torch.device("cuda:0")
|
||||
valid_faces = TestMeshNormalConsistency.init_faces(num_verts).to(device)
|
||||
verts_list = []
|
||||
faces_list = []
|
||||
for _ in range(num_meshes):
|
||||
verts = (
|
||||
torch.rand((num_verts, 3), dtype=torch.float32, device=device)
|
||||
* 2.0
|
||||
torch.rand((num_verts, 3), dtype=torch.float32, device=device) * 2.0
|
||||
- 1.0
|
||||
) # verts in the space of [-1, 1]
|
||||
"""
|
||||
@@ -105,8 +102,7 @@ class TestMeshNormalConsistency(unittest.TestCase):
|
||||
(
|
||||
1
|
||||
- torch.cosine_similarity(
|
||||
normals[i].view(1, 3),
|
||||
-normals[j].view(1, 3),
|
||||
normals[i].view(1, 3), -normals[j].view(1, 3)
|
||||
)
|
||||
)
|
||||
)
|
||||
@@ -137,9 +133,7 @@ class TestMeshNormalConsistency(unittest.TestCase):
|
||||
device = torch.device("cuda:0")
|
||||
# mesh1 shown above
|
||||
verts1 = torch.rand((4, 3), dtype=torch.float32, device=device)
|
||||
faces1 = torch.tensor(
|
||||
[[0, 1, 2], [2, 1, 3]], dtype=torch.int64, device=device
|
||||
)
|
||||
faces1 = torch.tensor([[0, 1, 2], [2, 1, 3]], dtype=torch.int64, device=device)
|
||||
|
||||
# mesh2 is a cuboid with 8 verts, 12 faces and 18 edges
|
||||
verts2 = torch.tensor(
|
||||
@@ -181,9 +175,7 @@ class TestMeshNormalConsistency(unittest.TestCase):
|
||||
[[0, 1, 2], [2, 1, 3], [2, 1, 4]], dtype=torch.int64, device=device
|
||||
)
|
||||
|
||||
meshes = Meshes(
|
||||
verts=[verts1, verts2, verts3], faces=[faces1, faces2, faces3]
|
||||
)
|
||||
meshes = Meshes(verts=[verts1, verts2, verts3], faces=[faces1, faces2, faces3])
|
||||
|
||||
# mesh1: normal consistency computation
|
||||
n0 = (verts1[1] - verts1[2]).cross(verts1[3] - verts1[2])
|
||||
|
||||
Reference in New Issue
Block a user