mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-20 22:30:35 +08:00
Address black + isort fbsource linter warnings
Summary: Address black + isort fbsource linter warnings from D20558374 (previous diff) Reviewed By: nikhilaravi Differential Revision: D20558373 fbshipit-source-id: d3607de4a01fb24c0d5269634563a7914bddf1c8
This commit is contained in:
committed by
Facebook GitHub Bot
parent
eb512ffde3
commit
d57daa6f85
@@ -2,8 +2,8 @@
|
||||
|
||||
|
||||
import unittest
|
||||
import torch
|
||||
|
||||
import torch
|
||||
from pytorch3d.loss.mesh_laplacian_smoothing import mesh_laplacian_smoothing
|
||||
from pytorch3d.structures.meshes import Meshes
|
||||
|
||||
@@ -56,9 +56,7 @@ class TestLaplacianSmoothing(unittest.TestCase):
|
||||
V = verts_packed.shape[0]
|
||||
|
||||
L = torch.zeros((V, V), dtype=torch.float32, device=meshes.device)
|
||||
inv_areas = torch.zeros(
|
||||
(V, 1), dtype=torch.float32, device=meshes.device
|
||||
)
|
||||
inv_areas = torch.zeros((V, 1), dtype=torch.float32, device=meshes.device)
|
||||
|
||||
for f in faces_packed:
|
||||
v0 = verts_packed[f[0], :]
|
||||
@@ -69,9 +67,7 @@ class TestLaplacianSmoothing(unittest.TestCase):
|
||||
C = (v0 - v1).norm()
|
||||
s = 0.5 * (A + B + C)
|
||||
|
||||
face_area = (
|
||||
(s * (s - A) * (s - B) * (s - C)).clamp_(min=1e-12).sqrt()
|
||||
)
|
||||
face_area = (s * (s - A) * (s - B) * (s - C)).clamp_(min=1e-12).sqrt()
|
||||
inv_areas[f[0]] += face_area
|
||||
inv_areas[f[1]] += face_area
|
||||
inv_areas[f[2]] += face_area
|
||||
@@ -114,16 +110,13 @@ class TestLaplacianSmoothing(unittest.TestCase):
|
||||
return loss.sum() / len(meshes)
|
||||
|
||||
@staticmethod
|
||||
def init_meshes(
|
||||
num_meshes: int = 10, num_verts: int = 1000, num_faces: int = 3000
|
||||
):
|
||||
def init_meshes(num_meshes: int = 10, num_verts: int = 1000, num_faces: int = 3000):
|
||||
device = torch.device("cuda:0")
|
||||
verts_list = []
|
||||
faces_list = []
|
||||
for _ in range(num_meshes):
|
||||
verts = (
|
||||
torch.rand((num_verts, 3), dtype=torch.float32, device=device)
|
||||
* 2.0
|
||||
torch.rand((num_verts, 3), dtype=torch.float32, device=device) * 2.0
|
||||
- 1.0
|
||||
) # verts in the space of [-1, 1]
|
||||
faces = torch.stack(
|
||||
@@ -148,9 +141,7 @@ class TestLaplacianSmoothing(unittest.TestCase):
|
||||
|
||||
# feats in list
|
||||
out = mesh_laplacian_smoothing(meshes, method="uniform")
|
||||
naive_out = TestLaplacianSmoothing.laplacian_smoothing_naive_uniform(
|
||||
meshes
|
||||
)
|
||||
naive_out = TestLaplacianSmoothing.laplacian_smoothing_naive_uniform(meshes)
|
||||
|
||||
self.assertTrue(torch.allclose(out, naive_out))
|
||||
|
||||
@@ -190,9 +181,7 @@ class TestLaplacianSmoothing(unittest.TestCase):
|
||||
verts_list = []
|
||||
faces_list = []
|
||||
for _ in range(num_meshes):
|
||||
verts = torch.rand(
|
||||
(num_verts, 3), dtype=torch.float32, device=device
|
||||
)
|
||||
verts = torch.rand((num_verts, 3), dtype=torch.float32, device=device)
|
||||
faces = torch.randint(
|
||||
num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user