Address black + isort fbsource linter warnings

Summary: Address black + isort fbsource linter warnings from D20558374 (previous diff)

Reviewed By: nikhilaravi

Differential Revision: D20558373

fbshipit-source-id: d3607de4a01fb24c0d5269634563a7914bddf1c8
This commit is contained in:
Patrick Labatut
2020-03-29 14:46:33 -07:00
committed by Facebook GitHub Bot
parent eb512ffde3
commit d57daa6f85
110 changed files with 705 additions and 1850 deletions

View File

@@ -1,9 +1,9 @@
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import numpy as np
import unittest
import torch
import numpy as np
import torch
from pytorch3d.renderer.blending import (
BlendParams,
hard_rgb_blend,
@@ -43,9 +43,7 @@ def sigmoid_blend_naive_loop(colors, fragments, blend_params):
return pixel_colors
def sigmoid_blend_naive_loop_backward(
grad_images, images, fragments, blend_params
):
def sigmoid_blend_naive_loop_backward(grad_images, images, fragments, blend_params):
pix_to_face = fragments.pix_to_face
dists = fragments.dists
sigma = blend_params.sigma
@@ -135,14 +133,7 @@ class TestBlending(unittest.TestCase):
torch.manual_seed(42)
def _compare_impls(
self,
fn1,
fn2,
args1,
args2,
grad_var1=None,
grad_var2=None,
compare_grads=True,
self, fn1, fn2, args1, args2, grad_var1=None, grad_var2=None, compare_grads=True
):
out1 = fn1(*args1)
@@ -160,9 +151,7 @@ class TestBlending(unittest.TestCase):
(out2 * grad_out).sum().backward()
self.assertTrue(hasattr(grad_var2, "grad"))
self.assertTrue(
torch.allclose(
grad_var1.grad.cpu(), grad_var2.grad.cpu(), atol=2e-5
)
torch.allclose(grad_var1.grad.cpu(), grad_var2.grad.cpu(), atol=2e-5)
)
def test_hard_rgb_blend(self):
@@ -199,9 +188,7 @@ class TestBlending(unittest.TestCase):
# # (-) means inside triangle, (+) means outside triangle.
random_sign_flip = torch.rand((N, S, S, K))
random_sign_flip[random_sign_flip > 0.5] *= -1.0
dists = torch.randn(
size=(N, S, S, K), requires_grad=True, device=device
)
dists = torch.randn(size=(N, S, S, K), requires_grad=True, device=device)
fragments = Fragments(
pix_to_face=pix_to_face,
bary_coords=empty, # dummy
@@ -238,9 +225,7 @@ class TestBlending(unittest.TestCase):
# # (-) means inside triangle, (+) means outside triangle.
random_sign_flip = torch.rand((N, S, S, K))
random_sign_flip[random_sign_flip > 0.5] *= -1.0
dists1 = torch.randn(
size=(N, S, S, K), requires_grad=True, device=device
)
dists1 = torch.randn(size=(N, S, S, K), requires_grad=True, device=device)
dists2 = dists1.detach().clone()
dists2.requires_grad = True
@@ -276,9 +261,7 @@ class TestBlending(unittest.TestCase):
# of the image with surrounding padded values.
N, S, K = 1, 8, 2
device = torch.device("cuda")
pix_to_face = -torch.ones(
(N, S, S, K), dtype=torch.int64, device=device
)
pix_to_face = -torch.ones((N, S, S, K), dtype=torch.int64, device=device)
h = int(S / 2)
pix_to_face_full = torch.randint(
size=(N, h, h, K), low=0, high=100, device=device
@@ -294,9 +277,7 @@ class TestBlending(unittest.TestCase):
# randomly flip the sign of the distance
# (-) means inside triangle, (+) means outside triangle.
dists1 = (
torch.randn(size=(N, S, S, K), device=device) * random_sign_flip
)
dists1 = torch.randn(size=(N, S, S, K), device=device) * random_sign_flip
dists2 = dists1.clone()
zbuf2 = zbuf1.clone()
dists1.requires_grad = True
@@ -353,9 +334,7 @@ class TestBlending(unittest.TestCase):
# # (-) means inside triangle, (+) means outside triangle.
random_sign_flip = torch.rand((N, S, S, K), device=device)
random_sign_flip[random_sign_flip > 0.5] *= -1.0
dists1 = torch.randn(
size=(N, S, S, K), requires_grad=True, device=device
)
dists1 = torch.randn(size=(N, S, S, K), requires_grad=True, device=device)
fragments = Fragments(
pix_to_face=pix_to_face,
bary_coords=empty, # dummy
@@ -398,15 +377,10 @@ class TestBlending(unittest.TestCase):
# # (-) means inside triangle, (+) means outside triangle.
random_sign_flip = torch.rand((N, S, S, K), device=device)
random_sign_flip[random_sign_flip > 0.5] *= -1.0
dists1 = torch.randn(
size=(N, S, S, K), requires_grad=True, device=device
)
dists1 = torch.randn(size=(N, S, S, K), requires_grad=True, device=device)
zbuf = torch.randn(size=(N, S, S, K), requires_grad=True, device=device)
fragments = Fragments(
pix_to_face=pix_to_face,
bary_coords=empty, # dummy
zbuf=zbuf,
dists=dists1,
pix_to_face=pix_to_face, bary_coords=empty, zbuf=zbuf, dists=dists1 # dummy
)
blend_params = BlendParams(sigma=1e-3)