mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-25 08:40:35 +08:00
Address black + isort fbsource linter warnings
Summary: Address black + isort fbsource linter warnings from D20558374 (previous diff) Reviewed By: nikhilaravi Differential Revision: D20558373 fbshipit-source-id: d3607de4a01fb24c0d5269634563a7914bddf1c8
This commit is contained in:
committed by
Facebook GitHub Bot
parent
eb512ffde3
commit
d57daa6f85
@@ -1,6 +1,7 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
||||
|
||||
from typing import List
|
||||
|
||||
import torch
|
||||
|
||||
from . import utils as struct_utils
|
||||
@@ -314,14 +315,11 @@ class Meshes(object):
|
||||
if isinstance(verts, list) and isinstance(faces, list):
|
||||
self._verts_list = verts
|
||||
self._faces_list = [
|
||||
f[f.gt(-1).all(1)].to(torch.int64) if len(f) > 0 else f
|
||||
for f in faces
|
||||
f[f.gt(-1).all(1)].to(torch.int64) if len(f) > 0 else f for f in faces
|
||||
]
|
||||
self._N = len(self._verts_list)
|
||||
self.device = torch.device("cpu")
|
||||
self.valid = torch.zeros(
|
||||
(self._N,), dtype=torch.bool, device=self.device
|
||||
)
|
||||
self.valid = torch.zeros((self._N,), dtype=torch.bool, device=self.device)
|
||||
if self._N > 0:
|
||||
self.device = self._verts_list[0].device
|
||||
self._num_verts_per_mesh = torch.tensor(
|
||||
@@ -348,18 +346,14 @@ class Meshes(object):
|
||||
|
||||
elif torch.is_tensor(verts) and torch.is_tensor(faces):
|
||||
if verts.size(2) != 3 and faces.size(2) != 3:
|
||||
raise ValueError(
|
||||
"Verts and Faces tensors have incorrect dimensions."
|
||||
)
|
||||
raise ValueError("Verts and Faces tensors have incorrect dimensions.")
|
||||
self._verts_padded = verts
|
||||
self._faces_padded = faces.to(torch.int64)
|
||||
self._N = self._verts_padded.shape[0]
|
||||
self._V = self._verts_padded.shape[1]
|
||||
|
||||
self.device = self._verts_padded.device
|
||||
self.valid = torch.zeros(
|
||||
(self._N,), dtype=torch.bool, device=self.device
|
||||
)
|
||||
self.valid = torch.zeros((self._N,), dtype=torch.bool, device=self.device)
|
||||
if self._N > 0:
|
||||
# Check that padded faces - which have value -1 - are at the
|
||||
# end of the tensors
|
||||
@@ -400,12 +394,8 @@ class Meshes(object):
|
||||
|
||||
# Set the num verts/faces on the textures if present.
|
||||
if self.textures is not None:
|
||||
self.textures._num_faces_per_mesh = (
|
||||
self._num_faces_per_mesh.tolist()
|
||||
)
|
||||
self.textures._num_verts_per_mesh = (
|
||||
self._num_verts_per_mesh.tolist()
|
||||
)
|
||||
self.textures._num_faces_per_mesh = self._num_faces_per_mesh.tolist()
|
||||
self.textures._num_verts_per_mesh = self._num_verts_per_mesh.tolist()
|
||||
|
||||
def __len__(self):
|
||||
return self._N
|
||||
@@ -665,8 +655,7 @@ class Meshes(object):
|
||||
|
||||
self._verts_padded_to_packed_idx = torch.cat(
|
||||
[
|
||||
torch.arange(v, dtype=torch.int64, device=self.device)
|
||||
+ i * self._V
|
||||
torch.arange(v, dtype=torch.int64, device=self.device) + i * self._V
|
||||
for (i, v) in enumerate(self._num_verts_per_mesh)
|
||||
],
|
||||
dim=0,
|
||||
@@ -706,15 +695,10 @@ class Meshes(object):
|
||||
tensor of normals of shape (N, max(V_n), 3).
|
||||
"""
|
||||
if self.isempty():
|
||||
return torch.zeros(
|
||||
(self._N, 0, 3), dtype=torch.float32, device=self.device
|
||||
)
|
||||
return torch.zeros((self._N, 0, 3), dtype=torch.float32, device=self.device)
|
||||
verts_normals_list = self.verts_normals_list()
|
||||
return struct_utils.list_to_padded(
|
||||
verts_normals_list,
|
||||
(self._V, 3),
|
||||
pad_value=0.0,
|
||||
equisized=self.equisized,
|
||||
verts_normals_list, (self._V, 3), pad_value=0.0, equisized=self.equisized
|
||||
)
|
||||
|
||||
def faces_normals_packed(self):
|
||||
@@ -750,15 +734,10 @@ class Meshes(object):
|
||||
tensor of normals of shape (N, max(F_n), 3).
|
||||
"""
|
||||
if self.isempty():
|
||||
return torch.zeros(
|
||||
(self._N, 0, 3), dtype=torch.float32, device=self.device
|
||||
)
|
||||
return torch.zeros((self._N, 0, 3), dtype=torch.float32, device=self.device)
|
||||
faces_normals_list = self.faces_normals_list()
|
||||
return struct_utils.list_to_padded(
|
||||
faces_normals_list,
|
||||
(self._F, 3),
|
||||
pad_value=0.0,
|
||||
equisized=self.equisized,
|
||||
faces_normals_list, (self._F, 3), pad_value=0.0, equisized=self.equisized
|
||||
)
|
||||
|
||||
def faces_areas_packed(self):
|
||||
@@ -797,9 +776,7 @@ class Meshes(object):
|
||||
return
|
||||
faces_packed = self.faces_packed()
|
||||
verts_packed = self.verts_packed()
|
||||
face_areas, face_normals = mesh_face_areas_normals(
|
||||
verts_packed, faces_packed
|
||||
)
|
||||
face_areas, face_normals = mesh_face_areas_normals(verts_packed, faces_packed)
|
||||
self._faces_areas_packed = face_areas
|
||||
self._faces_normals_packed = face_normals
|
||||
|
||||
@@ -813,9 +790,7 @@ class Meshes(object):
|
||||
refresh: Set to True to force recomputation of vertex normals.
|
||||
Default: False.
|
||||
"""
|
||||
if not (
|
||||
refresh or any(v is None for v in [self._verts_normals_packed])
|
||||
):
|
||||
if not (refresh or any(v is None for v in [self._verts_normals_packed])):
|
||||
return
|
||||
|
||||
if self.isempty():
|
||||
@@ -867,8 +842,7 @@ class Meshes(object):
|
||||
Computes the padded version of meshes from verts_list and faces_list.
|
||||
"""
|
||||
if not (
|
||||
refresh
|
||||
or any(v is None for v in [self._verts_padded, self._faces_padded])
|
||||
refresh or any(v is None for v in [self._verts_padded, self._faces_padded])
|
||||
):
|
||||
return
|
||||
|
||||
@@ -887,16 +861,10 @@ class Meshes(object):
|
||||
)
|
||||
else:
|
||||
self._faces_padded = struct_utils.list_to_padded(
|
||||
faces_list,
|
||||
(self._F, 3),
|
||||
pad_value=-1.0,
|
||||
equisized=self.equisized,
|
||||
faces_list, (self._F, 3), pad_value=-1.0, equisized=self.equisized
|
||||
)
|
||||
self._verts_padded = struct_utils.list_to_padded(
|
||||
verts_list,
|
||||
(self._V, 3),
|
||||
pad_value=0.0,
|
||||
equisized=self.equisized,
|
||||
verts_list, (self._V, 3), pad_value=0.0, equisized=self.equisized
|
||||
)
|
||||
|
||||
# TODO(nikhilar) Improve performance of _compute_packed.
|
||||
@@ -1055,9 +1023,7 @@ class Meshes(object):
|
||||
face_to_edge = inverse_idxs[face_to_edge]
|
||||
self._faces_packed_to_edges_packed = face_to_edge
|
||||
|
||||
num_edges_per_mesh = torch.zeros(
|
||||
self._N, dtype=torch.int32, device=self.device
|
||||
)
|
||||
num_edges_per_mesh = torch.zeros(self._N, dtype=torch.int32, device=self.device)
|
||||
ones = torch.ones(1, dtype=torch.int32, device=self.device).expand(
|
||||
self._edges_packed_to_mesh_idx.shape
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user