mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-23 15:50:39 +08:00
Address black + isort fbsource linter warnings
Summary: Address black + isort fbsource linter warnings from D20558374 (previous diff) Reviewed By: nikhilaravi Differential Revision: D20558373 fbshipit-source-id: d3607de4a01fb24c0d5269634563a7914bddf1c8
This commit is contained in:
committed by
Facebook GitHub Bot
parent
eb512ffde3
commit
d57daa6f85
@@ -5,4 +5,5 @@ from .rasterize_points import rasterize_points
|
||||
from .rasterizer import PointsRasterizationSettings, PointsRasterizer
|
||||
from .renderer import PointsRenderer
|
||||
|
||||
|
||||
__all__ = [k for k in globals().keys() if not k.startswith("_")]
|
||||
|
||||
@@ -5,6 +5,7 @@ import torch.nn as nn
|
||||
|
||||
from ..compositing import CompositeParams, alpha_composite, norm_weighted_sum
|
||||
|
||||
|
||||
# A compositor should take as input 3D points and some corresponding information.
|
||||
# Given this information, the compositor can:
|
||||
# - blend colors across the top K vertices at a pixel
|
||||
@@ -19,15 +20,11 @@ class AlphaCompositor(nn.Module):
|
||||
super().__init__()
|
||||
|
||||
self.composite_params = (
|
||||
composite_params
|
||||
if composite_params is not None
|
||||
else CompositeParams()
|
||||
composite_params if composite_params is not None else CompositeParams()
|
||||
)
|
||||
|
||||
def forward(self, fragments, alphas, ptclds, **kwargs) -> torch.Tensor:
|
||||
images = alpha_composite(
|
||||
fragments, alphas, ptclds, self.composite_params
|
||||
)
|
||||
images = alpha_composite(fragments, alphas, ptclds, self.composite_params)
|
||||
return images
|
||||
|
||||
|
||||
@@ -39,13 +36,9 @@ class NormWeightedCompositor(nn.Module):
|
||||
def __init__(self, composite_params=None):
|
||||
super().__init__()
|
||||
self.composite_params = (
|
||||
composite_params
|
||||
if composite_params is not None
|
||||
else CompositeParams()
|
||||
composite_params if composite_params is not None else CompositeParams()
|
||||
)
|
||||
|
||||
def forward(self, fragments, alphas, ptclds, **kwargs) -> torch.Tensor:
|
||||
images = norm_weighted_sum(
|
||||
fragments, alphas, ptclds, self.composite_params
|
||||
)
|
||||
images = norm_weighted_sum(fragments, alphas, ptclds, self.composite_params)
|
||||
return images
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
||||
|
||||
from typing import Optional
|
||||
import torch
|
||||
|
||||
import torch
|
||||
from pytorch3d import _C
|
||||
from pytorch3d.renderer.mesh.rasterize_meshes import pix_to_ndc
|
||||
|
||||
@@ -155,10 +155,7 @@ class _RasterizePoints(torch.autograd.Function):
|
||||
|
||||
|
||||
def rasterize_points_python(
|
||||
pointclouds,
|
||||
image_size: int = 256,
|
||||
radius: float = 0.01,
|
||||
points_per_pixel: int = 8,
|
||||
pointclouds, image_size: int = 256, radius: float = 0.01, points_per_pixel: int = 8
|
||||
):
|
||||
"""
|
||||
Naive pure PyTorch implementation of pointcloud rasterization.
|
||||
@@ -177,9 +174,7 @@ def rasterize_points_python(
|
||||
point_idxs = torch.full(
|
||||
(N, S, S, K), fill_value=-1, dtype=torch.int32, device=device
|
||||
)
|
||||
zbuf = torch.full(
|
||||
(N, S, S, K), fill_value=-1, dtype=torch.float32, device=device
|
||||
)
|
||||
zbuf = torch.full((N, S, S, K), fill_value=-1, dtype=torch.float32, device=device)
|
||||
pix_dists = torch.full(
|
||||
(N, S, S, K), fill_value=-1, dtype=torch.float32, device=device
|
||||
)
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
|
||||
|
||||
from typing import NamedTuple, Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
@@ -5,6 +5,7 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
# A renderer class should be initialized with a
|
||||
# function for rasterization and a function for compositing.
|
||||
# The rasterizer should:
|
||||
|
||||
Reference in New Issue
Block a user