mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-21 14:50:36 +08:00
Address black + isort fbsource linter warnings
Summary: Address black + isort fbsource linter warnings from D20558374 (previous diff) Reviewed By: nikhilaravi Differential Revision: D20558373 fbshipit-source-id: d3607de4a01fb24c0d5269634563a7914bddf1c8
This commit is contained in:
committed by
Facebook GitHub Bot
parent
eb512ffde3
commit
d57daa6f85
@@ -6,4 +6,5 @@ from .mesh_edge_loss import mesh_edge_loss
|
||||
from .mesh_laplacian_smoothing import mesh_laplacian_smoothing
|
||||
from .mesh_normal_consistency import mesh_normal_consistency
|
||||
|
||||
|
||||
__all__ = [k for k in globals().keys() if not k.startswith("_")]
|
||||
|
||||
@@ -2,13 +2,10 @@
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from pytorch3d.ops.nearest_neighbor_points import nn_points_idx
|
||||
|
||||
|
||||
def _validate_chamfer_reduction_inputs(
|
||||
batch_reduction: str, point_reduction: str
|
||||
):
|
||||
def _validate_chamfer_reduction_inputs(batch_reduction: str, point_reduction: str):
|
||||
"""Check the requested reductions are valid.
|
||||
|
||||
Args:
|
||||
@@ -18,17 +15,11 @@ def _validate_chamfer_reduction_inputs(
|
||||
points, can be one of ["none", "mean", "sum"].
|
||||
"""
|
||||
if batch_reduction not in ["none", "mean", "sum"]:
|
||||
raise ValueError(
|
||||
'batch_reduction must be one of ["none", "mean", "sum"]'
|
||||
)
|
||||
raise ValueError('batch_reduction must be one of ["none", "mean", "sum"]')
|
||||
if point_reduction not in ["none", "mean", "sum"]:
|
||||
raise ValueError(
|
||||
'point_reduction must be one of ["none", "mean", "sum"]'
|
||||
)
|
||||
raise ValueError('point_reduction must be one of ["none", "mean", "sum"]')
|
||||
if batch_reduction == "none" and point_reduction == "none":
|
||||
raise ValueError(
|
||||
'batch_reduction and point_reduction cannot both be "none".'
|
||||
)
|
||||
raise ValueError('batch_reduction and point_reduction cannot both be "none".')
|
||||
|
||||
|
||||
def chamfer_distance(
|
||||
@@ -87,10 +78,7 @@ def chamfer_distance(
|
||||
(x.sum((1, 2)) * weights).sum() * 0.0,
|
||||
(x.sum((1, 2)) * weights).sum() * 0.0,
|
||||
)
|
||||
return (
|
||||
(x.sum((1, 2)) * weights) * 0.0,
|
||||
(x.sum((1, 2)) * weights) * 0.0,
|
||||
)
|
||||
return ((x.sum((1, 2)) * weights) * 0.0, (x.sum((1, 2)) * weights) * 0.0)
|
||||
|
||||
return_normals = x_normals is not None and y_normals is not None
|
||||
cham_norm_x = x.new_zeros(())
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
|
||||
from itertools import islice
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
@@ -76,10 +77,7 @@ def mesh_normal_consistency(meshes):
|
||||
with torch.no_grad():
|
||||
edge_idx = face_to_edge.reshape(F * 3) # (3 * F,) indexes into edges
|
||||
vert_idx = (
|
||||
faces_packed.view(1, F, 3)
|
||||
.expand(3, F, 3)
|
||||
.transpose(0, 1)
|
||||
.reshape(3 * F, 3)
|
||||
faces_packed.view(1, F, 3).expand(3, F, 3).transpose(0, 1).reshape(3 * F, 3)
|
||||
)
|
||||
edge_idx, edge_sort_idx = edge_idx.sort()
|
||||
vert_idx = vert_idx[edge_sort_idx]
|
||||
@@ -132,9 +130,7 @@ def mesh_normal_consistency(meshes):
|
||||
loss = 1 - torch.cosine_similarity(n0, n1, dim=1)
|
||||
|
||||
verts_packed_to_mesh_idx = verts_packed_to_mesh_idx[vert_idx[:, 0]]
|
||||
verts_packed_to_mesh_idx = verts_packed_to_mesh_idx[
|
||||
vert_edge_pair_idx[:, 0]
|
||||
]
|
||||
verts_packed_to_mesh_idx = verts_packed_to_mesh_idx[vert_edge_pair_idx[:, 0]]
|
||||
num_normals = verts_packed_to_mesh_idx.bincount(minlength=N)
|
||||
weights = 1.0 / num_normals[verts_packed_to_mesh_idx].float()
|
||||
|
||||
|
||||
Reference in New Issue
Block a user