Update Rasterizer and add end2end fisheye integration test

Summary:
1) Update rasterizer/point rasterizer to accommodate fisheyecamera. Specifically, transform_points is in placement of explicit transform compositions.

2) In rasterizer unittests, update corresponding tests for rasterizer and point_rasterizer. Address comments to test fisheye against perspective camera when distortions are turned off.

3) Address comments to add end2end test for fisheyecameras. In test_render_meshes, fisheyecameras are added to camera enuerations whenever possible.

4) Test renderings with fisheyecameras of different params on cow mesh.

5) Use compositions for linear cameras whenever possible.

Reviewed By: kjchalup

Differential Revision: D38932736

fbshipit-source-id: 5b7074fc001f2390f4cf43c7267a8b37fd987547
This commit is contained in:
Jiali Duan
2022-08-31 16:50:41 -07:00
committed by Facebook GitHub Bot
parent b0515e1461
commit d19e6243d0
63 changed files with 566 additions and 76 deletions

View File

@@ -21,6 +21,7 @@ from pytorch3d.renderer import (
PointsRasterizer,
RasterizationSettings,
)
from pytorch3d.renderer.fisheyecameras import FishEyeCameras
from pytorch3d.renderer.opengl.rasterizer_opengl import (
_check_cameras,
_check_raster_settings,
@@ -51,6 +52,9 @@ class TestMeshRasterizer(unittest.TestCase):
def test_simple_sphere(self):
self._simple_sphere(MeshRasterizer)
def test_simple_sphere_fisheye(self):
self._simple_sphere_fisheye_against_perspective(MeshRasterizer)
def test_simple_sphere_opengl(self):
self._simple_sphere(MeshRasterizerOpenGL)
@@ -155,6 +159,91 @@ class TestMeshRasterizer(unittest.TestCase):
self.assertTrue(torch.allclose(image, image_ref))
def _simple_sphere_fisheye_against_perspective(self, rasterizer_type):
device = torch.device("cuda:0")
# Init mesh
sphere_mesh = ico_sphere(5, device)
# Init rasterizer settings
R, T = look_at_view_transform(2.7, 0, 0)
# Init Fisheye camera params
focal = torch.tensor([[1.7321]], dtype=torch.float32)
principal_point = torch.tensor([[0.0101, -0.0101]])
perspective_cameras = PerspectiveCameras(
R=R,
T=T,
focal_length=focal,
principal_point=principal_point,
device="cuda:0",
)
fisheye_cameras = FishEyeCameras(
device=device,
R=R,
T=T,
focal_length=focal,
principal_point=principal_point,
world_coordinates=True,
use_radial=False,
use_tangential=False,
use_thin_prism=False,
)
raster_settings = RasterizationSettings(
image_size=512, blur_radius=0.0, faces_per_pixel=1, bin_size=0
)
# Init rasterizer
perspective_rasterizer = rasterizer_type(
cameras=perspective_cameras, raster_settings=raster_settings
)
fisheye_rasterizer = rasterizer_type(
cameras=fisheye_cameras, raster_settings=raster_settings
)
####################################################################################
# Test rasterizing a single mesh comparing fisheye camera against perspective camera
####################################################################################
perspective_fragments = perspective_rasterizer(sphere_mesh)
perspective_image = perspective_fragments.pix_to_face[0, ..., 0].squeeze().cpu()
# Convert pix_to_face to a binary mask
perspective_image[perspective_image >= 0] = 1.0
perspective_image[perspective_image < 0] = 0.0
if DEBUG:
Image.fromarray((perspective_image.numpy() * 255).astype(np.uint8)).save(
DATA_DIR
/ f"DEBUG_test_perspective_rasterized_sphere_{rasterizer_type.__name__}.png"
)
fisheye_fragments = fisheye_rasterizer(sphere_mesh)
fisheye_image = fisheye_fragments.pix_to_face[0, ..., 0].squeeze().cpu()
# Convert pix_to_face to a binary mask
fisheye_image[fisheye_image >= 0] = 1.0
fisheye_image[fisheye_image < 0] = 0.0
if DEBUG:
Image.fromarray((fisheye_image.numpy() * 255).astype(np.uint8)).save(
DATA_DIR
/ f"DEBUG_test_fisheye_rasterized_sphere_{rasterizer_type.__name__}.png"
)
self.assertTrue(torch.allclose(fisheye_image, perspective_image))
##################################
# 2. Test with a batch of meshes
##################################
batch_size = 10
sphere_meshes = sphere_mesh.extend(batch_size)
fragments = fisheye_rasterizer(sphere_meshes)
for i in range(batch_size):
image = fragments.pix_to_face[i, ..., 0].squeeze().cpu()
image[image >= 0] = 1.0
image[image < 0] = 0.0
self.assertTrue(torch.allclose(image, perspective_image))
def test_simple_to(self):
# Check that to() works without a cameras object.
device = torch.device("cuda:0")
@@ -412,6 +501,76 @@ class TestPointRasterizer(unittest.TestCase):
image[image < 0] = 0.0
self.assertTrue(torch.allclose(image, image_ref[..., 0]))
def test_simple_sphere_fisheye_against_perspective(self):
device = torch.device("cuda:0")
# Rescale image_ref to the 0 - 1 range and convert to a binary mask.
sphere_mesh = ico_sphere(1, device)
verts_padded = sphere_mesh.verts_padded()
verts_padded[..., 1] += 0.2
verts_padded[..., 0] += 0.2
pointclouds = Pointclouds(points=verts_padded)
R, T = look_at_view_transform(2.7, 0.0, 0.0)
perspective_cameras = PerspectiveCameras(
R=R,
T=T,
device=device,
)
fisheye_cameras = FishEyeCameras(
device=device,
R=R,
T=T,
world_coordinates=True,
use_radial=False,
use_tangential=False,
use_thin_prism=False,
)
raster_settings = PointsRasterizationSettings(
image_size=256, radius=5e-2, points_per_pixel=1
)
#################################
# 1. Test init without cameras.
##################################
# Initialize without passing in the cameras
rasterizer = PointsRasterizer()
# Check that omitting the cameras in both initialization
# and the forward pass throws an error:
with self.assertRaisesRegex(ValueError, "Cameras must be specified"):
rasterizer(pointclouds)
########################################################################################
# 2. Test rasterizing a single pointcloud with fisheye camera agasint perspective camera
########################################################################################
perspective_fragments = rasterizer(
pointclouds, cameras=perspective_cameras, raster_settings=raster_settings
)
fisheye_fragments = rasterizer(
pointclouds, cameras=fisheye_cameras, raster_settings=raster_settings
)
# Convert idx to a binary mask
perspective_image = perspective_fragments.idx[0, ..., 0].squeeze().cpu()
perspective_image[perspective_image >= 0] = 1.0
perspective_image[perspective_image < 0] = 0.0
fisheye_image = fisheye_fragments.idx[0, ..., 0].squeeze().cpu()
fisheye_image[fisheye_image >= 0] = 1.0
fisheye_image[fisheye_image < 0] = 0.0
if DEBUG:
Image.fromarray((perspective_image.numpy() * 255).astype(np.uint8)).save(
DATA_DIR / "DEBUG_test_rasterized_perspective_sphere_points.png"
)
Image.fromarray((fisheye_image.numpy() * 255).astype(np.uint8)).save(
DATA_DIR / "DEBUG_test_rasterized_fisheye_sphere_points.png"
)
self.assertTrue(torch.allclose(fisheye_image, perspective_image))
def test_simple_to(self):
# Check that to() works without a cameras object.
device = torch.device("cuda:0")