mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-22 23:30:35 +08:00
implicitron v0 (#1133)
Co-authored-by: Jeremy Francis Reizenstein <bottler@users.noreply.github.com>
This commit is contained in:
committed by
GitHub
parent
0e377c6850
commit
cdd2142dd5
270
tests/implicitron/test_viewsampling.py
Normal file
270
tests/implicitron/test_viewsampling.py
Normal file
@@ -0,0 +1,270 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
|
||||
import unittest
|
||||
|
||||
import pytorch3d as pt3d
|
||||
import torch
|
||||
from pytorch3d.implicitron.models.view_pooling.view_sampling import ViewSampler
|
||||
from pytorch3d.implicitron.tools.config import expand_args_fields
|
||||
|
||||
|
||||
class TestViewsampling(unittest.TestCase):
|
||||
def setUp(self):
|
||||
torch.manual_seed(42)
|
||||
expand_args_fields(ViewSampler)
|
||||
|
||||
def _init_view_sampler_problem(self, random_masks):
|
||||
"""
|
||||
Generates a view-sampling problem:
|
||||
- 4 source views, 1st/2nd from the first sequence 'seq1', the rest from 'seq2'
|
||||
- 3 sets of 3D points from sequences 'seq1', 'seq2', 'seq2' respectively.
|
||||
- first 50 points in each batch correctly project to the source views,
|
||||
while the remaining 50 do not land in any projection plane.
|
||||
- each source view is labeled with image feature tensors of shape 7x100x50,
|
||||
where all elements of the n-th tensor are set to `n+1`.
|
||||
- the elements of the source view masks are either set to random binary number
|
||||
(if `random_masks==True`), or all set to 1 (`random_masks==False`).
|
||||
- the source view cameras are uniformly distributed on a unit circle
|
||||
in the x-z plane and look at (0,0,0).
|
||||
"""
|
||||
seq_id_camera = ["seq1", "seq1", "seq2", "seq2"]
|
||||
seq_id_pts = ["seq1", "seq2", "seq2"]
|
||||
pts_batch = 3
|
||||
n_pts = 100
|
||||
n_views = 4
|
||||
fdim = 7
|
||||
H = 100
|
||||
W = 50
|
||||
|
||||
# points that land into the projection planes of all cameras
|
||||
pts_inside = (
|
||||
torch.nn.functional.normalize(
|
||||
torch.randn(pts_batch, n_pts // 2, 3, device="cuda"),
|
||||
dim=-1,
|
||||
)
|
||||
* 0.1
|
||||
)
|
||||
|
||||
# move the outside points far above the scene
|
||||
pts_outside = pts_inside.clone()
|
||||
pts_outside[:, :, 1] += 1e8
|
||||
pts = torch.cat([pts_inside, pts_outside], dim=1)
|
||||
|
||||
R, T = pt3d.renderer.look_at_view_transform(
|
||||
dist=1.0,
|
||||
elev=0.0,
|
||||
azim=torch.linspace(0, 360, n_views + 1)[:n_views],
|
||||
degrees=True,
|
||||
device=pts.device,
|
||||
)
|
||||
focal_length = R.new_ones(n_views, 2)
|
||||
principal_point = R.new_zeros(n_views, 2)
|
||||
camera = pt3d.renderer.PerspectiveCameras(
|
||||
R=R,
|
||||
T=T,
|
||||
focal_length=focal_length,
|
||||
principal_point=principal_point,
|
||||
device=pts.device,
|
||||
)
|
||||
|
||||
feats_map = torch.arange(n_views, device=pts.device, dtype=pts.dtype) + 1
|
||||
feats = {"feats": feats_map[:, None, None, None].repeat(1, fdim, H, W)}
|
||||
|
||||
masks = (
|
||||
torch.rand(n_views, 1, H, W, device=pts.device, dtype=pts.dtype) > 0.5
|
||||
).type_as(R)
|
||||
|
||||
if not random_masks:
|
||||
masks[:] = 1.0
|
||||
|
||||
return pts, camera, feats, masks, seq_id_camera, seq_id_pts
|
||||
|
||||
def test_compare_with_naive(self):
|
||||
"""
|
||||
Compares the outputs of the efficient ViewSampler module with a
|
||||
naive implementation.
|
||||
"""
|
||||
|
||||
(
|
||||
pts,
|
||||
camera,
|
||||
feats,
|
||||
masks,
|
||||
seq_id_camera,
|
||||
seq_id_pts,
|
||||
) = self._init_view_sampler_problem(True)
|
||||
|
||||
for masked_sampling in (True, False):
|
||||
feats_sampled_n, masks_sampled_n = _view_sample_naive(
|
||||
pts,
|
||||
seq_id_pts,
|
||||
camera,
|
||||
seq_id_camera,
|
||||
feats,
|
||||
masks,
|
||||
masked_sampling,
|
||||
)
|
||||
# make sure we generate the constructor for ViewSampler
|
||||
expand_args_fields(ViewSampler)
|
||||
view_sampler = ViewSampler(masked_sampling=masked_sampling)
|
||||
feats_sampled, masks_sampled = view_sampler(
|
||||
pts=pts,
|
||||
seq_id_pts=seq_id_pts,
|
||||
camera=camera,
|
||||
seq_id_camera=seq_id_camera,
|
||||
feats=feats,
|
||||
masks=masks,
|
||||
)
|
||||
for k in feats_sampled.keys():
|
||||
self.assertTrue(torch.allclose(feats_sampled[k], feats_sampled_n[k]))
|
||||
self.assertTrue(torch.allclose(masks_sampled, masks_sampled_n))
|
||||
|
||||
def test_viewsampling(self):
|
||||
"""
|
||||
Generates a viewsampling problem with predictable outcome, and compares
|
||||
the ViewSampler's output to the expected result.
|
||||
"""
|
||||
|
||||
(
|
||||
pts,
|
||||
camera,
|
||||
feats,
|
||||
masks,
|
||||
seq_id_camera,
|
||||
seq_id_pts,
|
||||
) = self._init_view_sampler_problem(False)
|
||||
|
||||
expand_args_fields(ViewSampler)
|
||||
|
||||
for masked_sampling in (True, False):
|
||||
|
||||
view_sampler = ViewSampler(masked_sampling=masked_sampling)
|
||||
|
||||
feats_sampled, masks_sampled = view_sampler(
|
||||
pts=pts,
|
||||
seq_id_pts=seq_id_pts,
|
||||
camera=camera,
|
||||
seq_id_camera=seq_id_camera,
|
||||
feats=feats,
|
||||
masks=masks,
|
||||
)
|
||||
|
||||
n_views = camera.R.shape[0]
|
||||
n_pts = pts.shape[1]
|
||||
feat_dim = feats["feats"].shape[1]
|
||||
pts_batch = pts.shape[0]
|
||||
n_pts_away = n_pts // 2
|
||||
|
||||
for pts_i in range(pts_batch):
|
||||
for view_i in range(n_views):
|
||||
if seq_id_pts[pts_i] != seq_id_camera[view_i]:
|
||||
# points / cameras come from different sequences
|
||||
gt_masks = pts.new_zeros(n_pts, 1)
|
||||
gt_feats = pts.new_zeros(n_pts, feat_dim)
|
||||
else:
|
||||
gt_masks = pts.new_ones(n_pts, 1)
|
||||
gt_feats = pts.new_ones(n_pts, feat_dim) * (view_i + 1)
|
||||
gt_feats[n_pts_away:] = 0.0
|
||||
if masked_sampling:
|
||||
gt_masks[n_pts_away:] = 0.0
|
||||
|
||||
for k in feats_sampled:
|
||||
self.assertTrue(
|
||||
torch.allclose(
|
||||
feats_sampled[k][pts_i, view_i],
|
||||
gt_feats,
|
||||
)
|
||||
)
|
||||
self.assertTrue(
|
||||
torch.allclose(
|
||||
masks_sampled[pts_i, view_i],
|
||||
gt_masks,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def _view_sample_naive(
|
||||
pts,
|
||||
seq_id_pts,
|
||||
camera,
|
||||
seq_id_camera,
|
||||
feats,
|
||||
masks,
|
||||
masked_sampling,
|
||||
):
|
||||
"""
|
||||
A naive implementation of the forward pass of ViewSampler.
|
||||
Refer to ViewSampler's docstring for description of the arguments.
|
||||
"""
|
||||
|
||||
pts_batch = pts.shape[0]
|
||||
n_views = camera.R.shape[0]
|
||||
n_pts = pts.shape[1]
|
||||
|
||||
feats_sampled = [[[] for _ in range(n_views)] for _ in range(pts_batch)]
|
||||
masks_sampled = [[[] for _ in range(n_views)] for _ in range(pts_batch)]
|
||||
|
||||
for pts_i in range(pts_batch):
|
||||
for view_i in range(n_views):
|
||||
if seq_id_pts[pts_i] != seq_id_camera[view_i]:
|
||||
# points/cameras come from different sequences
|
||||
feats_sampled_ = {
|
||||
k: f.new_zeros(n_pts, f.shape[1]) for k, f in feats.items()
|
||||
}
|
||||
masks_sampled_ = masks.new_zeros(n_pts, 1)
|
||||
else:
|
||||
# same sequence of pts and cameras -> sample
|
||||
feats_sampled_, masks_sampled_ = _sample_one_view_naive(
|
||||
camera[view_i],
|
||||
pts[pts_i],
|
||||
{k: f[view_i] for k, f in feats.items()},
|
||||
masks[view_i],
|
||||
masked_sampling,
|
||||
sampling_mode="bilinear",
|
||||
)
|
||||
feats_sampled[pts_i][view_i] = feats_sampled_
|
||||
masks_sampled[pts_i][view_i] = masks_sampled_
|
||||
|
||||
masks_sampled_cat = torch.stack([torch.stack(m) for m in masks_sampled])
|
||||
feats_sampled_cat = {}
|
||||
for k in feats_sampled[0][0].keys():
|
||||
feats_sampled_cat[k] = torch.stack(
|
||||
[torch.stack([f_[k] for f_ in f]) for f in feats_sampled]
|
||||
)
|
||||
return feats_sampled_cat, masks_sampled_cat
|
||||
|
||||
|
||||
def _sample_one_view_naive(
|
||||
camera,
|
||||
pts,
|
||||
feats,
|
||||
masks,
|
||||
masked_sampling,
|
||||
sampling_mode="bilinear",
|
||||
):
|
||||
"""
|
||||
Sample a single source view.
|
||||
"""
|
||||
proj_ndc = camera.transform_points(pts[None])[None, ..., :-1] # 1 x 1 x n_pts x 2
|
||||
feats_sampled = {
|
||||
k: pt3d.renderer.ndc_grid_sample(f[None], proj_ndc, mode=sampling_mode).permute(
|
||||
0, 3, 1, 2
|
||||
)[0, :, :, 0]
|
||||
for k, f in feats.items()
|
||||
} # n_pts x dim
|
||||
if not masked_sampling:
|
||||
n_pts = pts.shape[0]
|
||||
masks_sampled = proj_ndc.new_ones(n_pts, 1)
|
||||
else:
|
||||
masks_sampled = pt3d.renderer.ndc_grid_sample(
|
||||
masks[None],
|
||||
proj_ndc,
|
||||
mode=sampling_mode,
|
||||
align_corners=False,
|
||||
)[0, 0, 0, :][:, None]
|
||||
return feats_sampled, masks_sampled
|
||||
Reference in New Issue
Block a user