mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-22 07:10:34 +08:00
implicitron v0 (#1133)
Co-authored-by: Jeremy Francis Reizenstein <bottler@users.noreply.github.com>
This commit is contained in:
committed by
GitHub
parent
0e377c6850
commit
cdd2142dd5
63
tests/implicitron/test_ray_point_refiner.py
Normal file
63
tests/implicitron/test_ray_point_refiner.py
Normal file
@@ -0,0 +1,63 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import os
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
from pytorch3d.implicitron.models.renderer.ray_point_refiner import RayPointRefiner
|
||||
from pytorch3d.renderer import RayBundle
|
||||
|
||||
|
||||
if os.environ.get("FB_TEST", False):
|
||||
from common_testing import TestCaseMixin
|
||||
else:
|
||||
from tests.common_testing import TestCaseMixin
|
||||
|
||||
|
||||
class TestRayPointRefiner(TestCaseMixin, unittest.TestCase):
|
||||
def test_simple(self):
|
||||
length = 15
|
||||
n_pts_per_ray = 10
|
||||
|
||||
for add_input_samples in [False, True]:
|
||||
ray_point_refiner = RayPointRefiner(
|
||||
n_pts_per_ray=n_pts_per_ray,
|
||||
random_sampling=False,
|
||||
add_input_samples=add_input_samples,
|
||||
)
|
||||
lengths = torch.arange(length, dtype=torch.float32).expand(3, 25, length)
|
||||
bundle = RayBundle(lengths=lengths, origins=None, directions=None, xys=None)
|
||||
weights = torch.ones(3, 25, length)
|
||||
refined = ray_point_refiner(bundle, weights)
|
||||
|
||||
self.assertIsNone(refined.directions)
|
||||
self.assertIsNone(refined.origins)
|
||||
self.assertIsNone(refined.xys)
|
||||
expected = torch.linspace(0.5, length - 1.5, n_pts_per_ray)
|
||||
expected = expected.expand(3, 25, n_pts_per_ray)
|
||||
if add_input_samples:
|
||||
full_expected = torch.cat((lengths, expected), dim=-1).sort()[0]
|
||||
else:
|
||||
full_expected = expected
|
||||
self.assertClose(refined.lengths, full_expected)
|
||||
|
||||
ray_point_refiner_random = RayPointRefiner(
|
||||
n_pts_per_ray=n_pts_per_ray,
|
||||
random_sampling=True,
|
||||
add_input_samples=add_input_samples,
|
||||
)
|
||||
refined_random = ray_point_refiner_random(bundle, weights)
|
||||
lengths_random = refined_random.lengths
|
||||
self.assertEqual(lengths_random.shape, full_expected.shape)
|
||||
if not add_input_samples:
|
||||
self.assertGreater(lengths_random.min().item(), 0.5)
|
||||
self.assertLess(lengths_random.max().item(), length - 1.5)
|
||||
|
||||
# Check sorted
|
||||
self.assertTrue(
|
||||
(lengths_random[..., 1:] - lengths_random[..., :-1] > 0).all()
|
||||
)
|
||||
Reference in New Issue
Block a user