mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-20 22:30:35 +08:00
implicitron v0 (#1133)
Co-authored-by: Jeremy Francis Reizenstein <bottler@users.noreply.github.com>
This commit is contained in:
committed by
GitHub
parent
0e377c6850
commit
cdd2142dd5
215
tests/implicitron/test_batch_sampler.py
Normal file
215
tests/implicitron/test_batch_sampler.py
Normal file
@@ -0,0 +1,215 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
|
||||
import unittest
|
||||
from collections import defaultdict
|
||||
from dataclasses import dataclass
|
||||
|
||||
from pytorch3d.implicitron.dataset.scene_batch_sampler import SceneBatchSampler
|
||||
|
||||
|
||||
@dataclass
|
||||
class MockFrameAnnotation:
|
||||
frame_number: int
|
||||
frame_timestamp: float = 0.0
|
||||
|
||||
|
||||
class MockDataset:
|
||||
def __init__(self, num_seq, max_frame_gap=1):
|
||||
"""
|
||||
Makes a gap of max_frame_gap frame numbers in the middle of each sequence
|
||||
"""
|
||||
self.seq_annots = {f"seq_{i}": None for i in range(num_seq)}
|
||||
self.seq_to_idx = {
|
||||
f"seq_{i}": list(range(i * 10, i * 10 + 10)) for i in range(num_seq)
|
||||
}
|
||||
|
||||
# frame numbers within sequence: [0, ..., 4, n, ..., n+4]
|
||||
# where n - 4 == max_frame_gap
|
||||
frame_nos = list(range(5)) + list(range(4 + max_frame_gap, 9 + max_frame_gap))
|
||||
self.frame_annots = [
|
||||
{"frame_annotation": MockFrameAnnotation(no)} for no in frame_nos * num_seq
|
||||
]
|
||||
|
||||
def get_frame_numbers_and_timestamps(self, idxs):
|
||||
out = []
|
||||
for idx in idxs:
|
||||
frame_annotation = self.frame_annots[idx]["frame_annotation"]
|
||||
out.append(
|
||||
(frame_annotation.frame_number, frame_annotation.frame_timestamp)
|
||||
)
|
||||
return out
|
||||
|
||||
|
||||
class TestSceneBatchSampler(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.dataset_overfit = MockDataset(1)
|
||||
|
||||
def test_overfit(self):
|
||||
num_batches = 3
|
||||
batch_size = 10
|
||||
sampler = SceneBatchSampler(
|
||||
self.dataset_overfit,
|
||||
batch_size=batch_size,
|
||||
num_batches=num_batches,
|
||||
images_per_seq_options=[10], # will try to sample batch_size anyway
|
||||
)
|
||||
|
||||
self.assertEqual(len(sampler), num_batches)
|
||||
|
||||
it = iter(sampler)
|
||||
for _ in range(num_batches):
|
||||
batch = next(it)
|
||||
self.assertIsNotNone(batch)
|
||||
self.assertEqual(len(batch), batch_size) # true for our examples
|
||||
self.assertTrue(all(idx // 10 == 0 for idx in batch))
|
||||
|
||||
with self.assertRaises(StopIteration):
|
||||
batch = next(it)
|
||||
|
||||
def test_multiseq(self):
|
||||
for ips_options in [[10], [2], [3], [2, 3, 4]]:
|
||||
for sample_consecutive_frames in [True, False]:
|
||||
for consecutive_frames_max_gap in [0, 1, 3]:
|
||||
self._test_multiseq_flavour(
|
||||
ips_options,
|
||||
sample_consecutive_frames,
|
||||
consecutive_frames_max_gap,
|
||||
)
|
||||
|
||||
def test_multiseq_gaps(self):
|
||||
num_batches = 16
|
||||
batch_size = 10
|
||||
dataset_multiseq = MockDataset(5, max_frame_gap=3)
|
||||
for ips_options in [[10], [2], [3], [2, 3, 4]]:
|
||||
debug_info = f" Images per sequence: {ips_options}."
|
||||
|
||||
sampler = SceneBatchSampler(
|
||||
dataset_multiseq,
|
||||
batch_size=batch_size,
|
||||
num_batches=num_batches,
|
||||
images_per_seq_options=ips_options,
|
||||
sample_consecutive_frames=True,
|
||||
consecutive_frames_max_gap=1,
|
||||
)
|
||||
|
||||
self.assertEqual(len(sampler), num_batches, msg=debug_info)
|
||||
|
||||
it = iter(sampler)
|
||||
for _ in range(num_batches):
|
||||
batch = next(it)
|
||||
self.assertIsNotNone(batch, "batch is None in" + debug_info)
|
||||
if max(ips_options) > 5:
|
||||
# true for our examples
|
||||
self.assertEqual(len(batch), 5, msg=debug_info)
|
||||
else:
|
||||
# true for our examples
|
||||
self.assertEqual(len(batch), batch_size, msg=debug_info)
|
||||
|
||||
self._check_frames_are_consecutive(
|
||||
batch, dataset_multiseq.frame_annots, debug_info
|
||||
)
|
||||
|
||||
def _test_multiseq_flavour(
|
||||
self,
|
||||
ips_options,
|
||||
sample_consecutive_frames,
|
||||
consecutive_frames_max_gap,
|
||||
num_batches=16,
|
||||
batch_size=10,
|
||||
):
|
||||
debug_info = (
|
||||
f" Images per sequence: {ips_options}, "
|
||||
f"sample_consecutive_frames: {sample_consecutive_frames}, "
|
||||
f"consecutive_frames_max_gap: {consecutive_frames_max_gap}, "
|
||||
)
|
||||
# in this test, either consecutive_frames_max_gap == max_frame_gap,
|
||||
# or consecutive_frames_max_gap == 0, so segments consist of full sequences
|
||||
frame_gap = consecutive_frames_max_gap if consecutive_frames_max_gap > 0 else 3
|
||||
dataset_multiseq = MockDataset(5, max_frame_gap=frame_gap)
|
||||
sampler = SceneBatchSampler(
|
||||
dataset_multiseq,
|
||||
batch_size=batch_size,
|
||||
num_batches=num_batches,
|
||||
images_per_seq_options=ips_options,
|
||||
sample_consecutive_frames=sample_consecutive_frames,
|
||||
consecutive_frames_max_gap=consecutive_frames_max_gap,
|
||||
)
|
||||
|
||||
self.assertEqual(len(sampler), num_batches, msg=debug_info)
|
||||
|
||||
it = iter(sampler)
|
||||
typical_counts = set()
|
||||
for _ in range(num_batches):
|
||||
batch = next(it)
|
||||
self.assertIsNotNone(batch, "batch is None in" + debug_info)
|
||||
# true for our examples
|
||||
self.assertEqual(len(batch), batch_size, msg=debug_info)
|
||||
# find distribution over sequences
|
||||
counts = _count_by_quotient(batch, 10)
|
||||
freqs = _count_by_quotient(counts.values(), 1)
|
||||
self.assertLessEqual(
|
||||
len(freqs),
|
||||
2,
|
||||
msg="We should have maximum of 2 different "
|
||||
"frequences of sequences in the batch." + debug_info,
|
||||
)
|
||||
if len(freqs) == 2:
|
||||
most_seq_count = max(*freqs.keys())
|
||||
last_seq = min(*freqs.keys())
|
||||
self.assertEqual(
|
||||
freqs[last_seq],
|
||||
1,
|
||||
msg="Only one odd sequence allowed." + debug_info,
|
||||
)
|
||||
else:
|
||||
self.assertEqual(len(freqs), 1)
|
||||
most_seq_count = next(iter(freqs))
|
||||
|
||||
self.assertIn(most_seq_count, ips_options)
|
||||
typical_counts.add(most_seq_count)
|
||||
|
||||
if sample_consecutive_frames:
|
||||
self._check_frames_are_consecutive(
|
||||
batch,
|
||||
dataset_multiseq.frame_annots,
|
||||
debug_info,
|
||||
max_gap=consecutive_frames_max_gap,
|
||||
)
|
||||
|
||||
self.assertTrue(
|
||||
all(i in typical_counts for i in ips_options),
|
||||
"Some of the frequency options did not occur among "
|
||||
f"the {num_batches} batches (could be just bad luck)." + debug_info,
|
||||
)
|
||||
|
||||
with self.assertRaises(StopIteration):
|
||||
batch = next(it)
|
||||
|
||||
def _check_frames_are_consecutive(self, batch, annots, debug_info, max_gap=1):
|
||||
# make sure that sampled frames are consecutive
|
||||
for i in range(len(batch) - 1):
|
||||
curr_idx, next_idx = batch[i : i + 2]
|
||||
if curr_idx // 10 == next_idx // 10: # same sequence
|
||||
if max_gap > 0:
|
||||
curr_idx, next_idx = [
|
||||
annots[idx]["frame_annotation"].frame_number
|
||||
for idx in (curr_idx, next_idx)
|
||||
]
|
||||
gap = max_gap
|
||||
else:
|
||||
gap = 1 # we'll check that raw dataset indices are consecutive
|
||||
|
||||
self.assertLessEqual(next_idx - curr_idx, gap, msg=debug_info)
|
||||
|
||||
|
||||
def _count_by_quotient(indices, divisor):
|
||||
counter = defaultdict(int)
|
||||
for i in indices:
|
||||
counter[i // divisor] += 1
|
||||
|
||||
return counter
|
||||
Reference in New Issue
Block a user