mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Bumping the threshold to allow leeway for CI testing randomness.
Summary: 1. CircleCI tests fail because of different randomisation. I was able to reproduce it on devfair (with an older version of pytorch3d though), but with a new threshold, it works. Let’s push and see if it will work in CircleCI. 2. Fixing linter’s issue with `l` variable name. Reviewed By: bottler Differential Revision: D22573244 fbshipit-source-id: 32cebc8981883a3411ed971eb4a617469376964d
This commit is contained in:
parent
cc70950f40
commit
cdaac5f9c5
@ -166,7 +166,7 @@ def _compute_norm_sign_scaling_factor(c_cam, alphas, x_world, y, weight, eps=1e-
|
||||
return EpnpSolution(x_cam, R, T, err_2d, err_3d)
|
||||
|
||||
|
||||
def _gen_pairs(input, dim=-2, reducer=lambda l, r: ((l - r) ** 2).sum(dim=-1)):
|
||||
def _gen_pairs(input, dim=-2, reducer=lambda a, b: ((a - b) ** 2).sum(dim=-1)):
|
||||
""" Generates all pairs of different rows and then applies the reducer
|
||||
Args:
|
||||
input: a tensor
|
||||
@ -194,10 +194,10 @@ def _kernel_vec_distances(v):
|
||||
a tensor of B x 6 x [(D choose 2) + D];
|
||||
for D=4, the last dim means [B11 B22 B33 B44 B12 B13 B14 B23 B24 B34].
|
||||
"""
|
||||
dv = _gen_pairs(v, dim=-3, reducer=lambda l, r: l - r) # B x 6 x 3 x D
|
||||
dv = _gen_pairs(v, dim=-3, reducer=lambda a, b: a - b) # B x 6 x 3 x D
|
||||
|
||||
# we should take dot-product of all (i,j), i < j, with coeff 2
|
||||
rows_2ij = 2.0 * _gen_pairs(dv, dim=-1, reducer=lambda l, r: (l * r).sum(dim=-2))
|
||||
rows_2ij = 2.0 * _gen_pairs(dv, dim=-1, reducer=lambda a, b: (a * b).sum(dim=-2))
|
||||
# this should produce B x 6 x (D choose 2) tensor
|
||||
|
||||
# we should take dot-product of all (i,i)
|
||||
|
@ -60,7 +60,7 @@ class TestPerspectiveNPoints(TestCaseMixin, unittest.TestCase):
|
||||
)
|
||||
|
||||
self.assertClose(err_2d, sol.err_2d, msg=assert_msg)
|
||||
self.assertTrue((err_2d < 5e-4).all(), msg=assert_msg)
|
||||
self.assertTrue((err_2d < 1e-3).all(), msg=assert_msg)
|
||||
|
||||
def norm_fn(t):
|
||||
return t.norm(dim=-1)
|
||||
|
Loading…
x
Reference in New Issue
Block a user