Update NDC raysampler for non-square convention (#29)

Summary:
- Old NDC convention had xy coords in [-1,1]x[-1,1]
- New NDC convention has xy coords in [-1, 1]x[-u, u] or [-u, u]x[-1, 1]

where u > 1 is the aspect ratio of the image.

This PR fixes the NDC raysampler to use the new convention.

Partial fix for https://github.com/facebookresearch/pytorch3d/issues/868

Pull Request resolved: https://github.com/fairinternal/pytorch3d/pull/29

Reviewed By: davnov134

Differential Revision: D31926148

Pulled By: bottler

fbshipit-source-id: c6c42c60d1473b04e60ceb49c8c10951ddf03c74
This commit is contained in:
Ignacio Rocco
2021-11-05 10:28:51 -07:00
committed by Facebook GitHub Bot
parent bfeb82efa3
commit cac6cb1b78
4 changed files with 118 additions and 35 deletions

View File

@@ -24,6 +24,69 @@ from pytorch3d.transforms import Rotate
from test_cameras import init_random_cameras
class TestNDCRaysamplerConvention(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
torch.manual_seed(42)
def test_ndc_convention(
self,
h=428,
w=760,
):
device = torch.device("cuda")
camera = init_random_cameras(PerspectiveCameras, 1, random_z=True).to(device)
depth_map = torch.ones((1, 1, h, w)).to(device)
xyz = ray_bundle_to_ray_points(
NDCGridRaysampler(
image_width=w,
image_height=h,
n_pts_per_ray=1,
min_depth=1.0,
max_depth=1.0,
)(camera)._replace(lengths=depth_map[:, 0, ..., None])
).view(1, -1, 3)
# project pointcloud
xy = camera.transform_points(xyz)[:, :, :2].squeeze()
xy_grid = self._get_ndc_grid(h, w, device)
self.assertClose(
xy,
xy_grid,
atol=1e-4,
)
def _get_ndc_grid(self, h, w, device):
if w >= h:
range_x = w / h
range_y = 1.0
else:
range_x = 1.0
range_y = h / w
half_pix_width = range_x / w
half_pix_height = range_y / h
min_x = range_x - half_pix_width
max_x = -range_x + half_pix_width
min_y = range_y - half_pix_height
max_y = -range_y + half_pix_height
y_grid, x_grid = torch.meshgrid(
torch.linspace(min_y, max_y, h, dtype=torch.float32),
torch.linspace(min_x, max_x, w, dtype=torch.float32),
)
x_points = x_grid.contiguous().view(-1).to(device)
y_points = y_grid.contiguous().view(-1).to(device)
xy = torch.stack((x_points, y_points), dim=1)
return xy
class TestRaysampling(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
torch.manual_seed(42)
@@ -147,12 +210,19 @@ class TestRaysampling(TestCaseMixin, unittest.TestCase):
if issubclass(raysampler_type, NDCGridRaysampler):
# adjust the gt bounds for NDCGridRaysampler
half_pix_width = 1.0 / image_width
half_pix_height = 1.0 / image_height
min_x_ = 1.0 - half_pix_width
max_x_ = -1.0 + half_pix_width
min_y_ = 1.0 - half_pix_height
max_y_ = -1.0 + half_pix_height
if image_width >= image_height:
range_x = image_width / image_height
range_y = 1.0
else:
range_x = 1.0
range_y = image_height / image_width
half_pix_width = range_x / image_width
half_pix_height = range_y / image_height
min_x_ = range_x - half_pix_width
max_x_ = -range_x + half_pix_width
min_y_ = range_y - half_pix_height
max_y_ = -range_y + half_pix_height
else:
min_x_ = min_x
max_x_ = max_x