formatting changes from black 22.3.0

Summary:
Applies the black-fbsource codemod with the new build of pyfmt.

paintitblack

Reviewed By: lisroach

Differential Revision: D36324783

fbshipit-source-id: 280c09e88257e5e569ab729691165d8dedd767bc
This commit is contained in:
John Reese
2022-05-11 19:55:56 -07:00
committed by Facebook GitHub Bot
parent c21ba144e7
commit bef959c755
25 changed files with 39 additions and 41 deletions

View File

@@ -15,7 +15,7 @@ def bm_render_volumes() -> None:
case_grid = {
"batch_size": [1, 5],
"raymarcher_type": [EmissionAbsorptionRaymarcher, AbsorptionOnlyRaymarcher],
"n_rays_per_image": [64 ** 2, 256 ** 2],
"n_rays_per_image": [64**2, 256**2],
"n_pts_per_ray": [16, 128],
}
test_cases = itertools.product(*case_grid.values())

View File

@@ -17,7 +17,7 @@ def bm_render_volumes() -> None:
"batch_size": [1, 5],
"shape": ["sphere", "cube"],
"raymarcher_type": [EmissionAbsorptionRaymarcher, AbsorptionOnlyRaymarcher],
"n_rays_per_image": [64 ** 2, 256 ** 2],
"n_rays_per_image": [64**2, 256**2],
"n_pts_per_ray": [16, 128],
}
test_cases = itertools.product(*case_grid.values())

View File

@@ -124,7 +124,7 @@ class TestEvaluation(unittest.TestCase):
)
self.assertGreater(
float(mse_depth_unmasked.sum()),
float(diff ** 2),
float(diff**2),
)
self.assertGreater(
float(abs_depth_unmasked.sum()),
@@ -143,7 +143,7 @@ class TestEvaluation(unittest.TestCase):
)
if _mask_gt is not None:
expected_err_abs = diff
expected_err_mse = diff ** 2
expected_err_mse = diff**2
else:
err_mask = (gt > 0.0).float() * mask
if crop > 0:
@@ -195,7 +195,7 @@ class TestEvaluation(unittest.TestCase):
)
self.assertAlmostEqual(float(psnr), float(psnr_cv2), delta=1e-4)
# check that all PSNRs are bigger than the minimum possible PSNR
max_mse = max_diff ** 2
max_mse = max_diff**2
min_psnr = 10 * math.log10(1.0 / max_mse)
for _im1, _im2 in zip(im1, im2):
_psnr = calc_psnr(_im1, _im2)

View File

@@ -66,7 +66,7 @@ class TestAcosLinearExtrapolation(TestCaseMixin, unittest.TestCase):
# fit a line: slope * x + bias = y
x_1 = torch.stack([x, torch.ones_like(x)], dim=-1)
slope, bias = lstsq(x_1, y[:, None]).view(-1)[:2]
desired_slope = (-1.0) / torch.sqrt(1.0 - bound_t ** 2)
desired_slope = (-1.0) / torch.sqrt(1.0 - bound_t**2)
# test that the desired slope is the same as the fitted one
self.assertClose(desired_slope.view(1), slope.view(1), atol=1e-2)
# test that the autograd's slope is the same as the desired one

View File

@@ -412,7 +412,7 @@ class TestSpecularLighting(TestCaseMixin, unittest.TestCase):
camera_position=camera_position[None, :],
shininess=torch.tensor(10),
)
self.assertClose(output_light, expected_output ** 10)
self.assertClose(output_light, expected_output**10)
def test_specular_batched(self):
batch_size = 10

View File

@@ -62,7 +62,7 @@ class TestRasterizeMeshes(TestCaseMixin, unittest.TestCase):
torch.manual_seed(231)
device = torch.device("cpu")
image_size = 32
blur_radius = 0.1 ** 2
blur_radius = 0.1**2
faces_per_pixel = 3
for d in ["cpu", get_random_cuda_device()]:
@@ -167,7 +167,7 @@ class TestRasterizeMeshes(TestCaseMixin, unittest.TestCase):
torch.manual_seed(231)
image_size = 64
radius = 0.1 ** 2
radius = 0.1**2
faces_per_pixel = 3
device = torch.device("cpu")
meshes_cpu = ico_sphere(0, device)
@@ -224,7 +224,7 @@ class TestRasterizeMeshes(TestCaseMixin, unittest.TestCase):
# Make sure that the backward pass runs for all pathways
image_size = 64 # test is too slow for very large images.
N = 1
radius = 0.1 ** 2
radius = 0.1**2
faces_per_pixel = 3
grad_zbuf = torch.randn(N, image_size, image_size, faces_per_pixel)
@@ -997,7 +997,7 @@ class TestRasterizeMeshes(TestCaseMixin, unittest.TestCase):
ordering of faces.
"""
image_size = 10
blur_radius = 0.12 ** 2
blur_radius = 0.12**2
faces_per_pixel = 1
# fmt: off

View File

@@ -60,13 +60,13 @@ def spherical_volumetric_function(
# the squared distance of each ray point to the centroid of the sphere
surface_dist = (
(surface_vectors ** 2)
(surface_vectors**2)
.sum(-1, keepdim=True)
.view(*rays_points_world.shape[:-1], 1)
)
# set all ray densities within the sphere_diameter distance from the centroid to 1
rays_densities = torch.sigmoid(-100.0 * (surface_dist - sphere_diameter ** 2))
rays_densities = torch.sigmoid(-100.0 * (surface_dist - sphere_diameter**2))
# ray colors are proportional to the normalized surface_vectors
rays_features = (

View File

@@ -128,7 +128,7 @@ class TestSamplePoints(TestCaseMixin, unittest.TestCase):
# Sphere: points should have radius 1.
x, y, z = samples[1, :].unbind(1)
radius = torch.sqrt(x ** 2 + y ** 2 + z ** 2)
radius = torch.sqrt(x**2 + y**2 + z**2)
self.assertClose(radius, torch.ones(num_samples))