Example and test updates.

Summary: This commit performs pulsar example and test refinements. The examples are fully adjusted to adhere to PEP style guide and additional comments are added.

Reviewed By: nikhilaravi

Differential Revision: D24723391

fbshipit-source-id: 6d289006f080140159731e7f3a8c98b582164f1a
This commit is contained in:
Christoph Lassner
2020-11-04 09:53:19 -08:00
committed by Facebook GitHub Bot
parent e9a26f263a
commit b6be3b95fb
9 changed files with 569 additions and 448 deletions

View File

@@ -9,6 +9,7 @@ distorted. Gradient-based optimization is used to converge towards the
original camera parameters.
Output: cam.gif.
"""
import logging
import math
from os import path
@@ -21,10 +22,11 @@ from pytorch3d.transforms import axis_angle_to_matrix, matrix_to_rotation_6d
from torch import nn, optim
n_points = 20
width = 1_000
height = 1_000
device = torch.device("cuda")
LOGGER = logging.getLogger(__name__)
N_POINTS = 20
WIDTH = 1_000
HEIGHT = 1_000
DEVICE = torch.device("cuda")
class SceneModel(nn.Module):
@@ -45,20 +47,20 @@ class SceneModel(nn.Module):
self.gamma = 0.1
# Points.
torch.manual_seed(1)
vert_pos = torch.rand(n_points, 3, dtype=torch.float32) * 10.0
vert_pos = torch.rand(N_POINTS, 3, dtype=torch.float32) * 10.0
vert_pos[:, 2] += 25.0
vert_pos[:, :2] -= 5.0
self.register_parameter("vert_pos", nn.Parameter(vert_pos, requires_grad=False))
self.register_parameter(
"vert_col",
nn.Parameter(
torch.rand(n_points, 3, dtype=torch.float32), requires_grad=False
torch.rand(N_POINTS, 3, dtype=torch.float32), requires_grad=False
),
)
self.register_parameter(
"vert_rad",
nn.Parameter(
torch.rand(n_points, dtype=torch.float32), requires_grad=False
torch.rand(N_POINTS, dtype=torch.float32), requires_grad=False
),
)
self.register_parameter(
@@ -90,7 +92,7 @@ class SceneModel(nn.Module):
torch.tensor([4.8, 1.8], dtype=torch.float32), requires_grad=True
),
)
self.renderer = Renderer(width, height, n_points, right_handed_system=True)
self.renderer = Renderer(WIDTH, HEIGHT, N_POINTS, right_handed_system=True)
def forward(self):
return self.renderer.forward(
@@ -103,58 +105,71 @@ class SceneModel(nn.Module):
)
# Load reference.
ref = (
torch.from_numpy(
imageio.imread(
"../../tests/pulsar/reference/examples_TestRenderer_test_cam.png"
)[:, ::-1, :].copy()
).to(torch.float32)
/ 255.0
).to(device)
# Set up model.
model = SceneModel().to(device)
# Optimizer.
optimizer = optim.SGD(
[
{"params": [model.cam_pos], "lr": 1e-4}, # 1e-3
{"params": [model.cam_rot], "lr": 5e-6},
{"params": [model.cam_sensor], "lr": 1e-4},
]
)
def cli():
"""
Camera optimization example using pulsar.
print("Writing video to `%s`." % (path.abspath("cam.gif")))
writer = imageio.get_writer("cam.gif", format="gif", fps=25)
# Optimize.
for i in range(300):
optimizer.zero_grad()
result = model()
# Visualize.
result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
cv2.imshow("opt", result_im[:, :, ::-1])
writer.append_data(result_im)
overlay_img = np.ascontiguousarray(
((result * 0.5 + ref * 0.5).cpu().detach().numpy() * 255).astype(np.uint8)[
:, :, ::-1
Writes to `cam.gif`.
"""
LOGGER.info("Loading reference...")
# Load reference.
ref = (
torch.from_numpy(
imageio.imread(
"../../tests/pulsar/reference/examples_TestRenderer_test_cam.png"
)[:, ::-1, :].copy()
).to(torch.float32)
/ 255.0
).to(DEVICE)
# Set up model.
model = SceneModel().to(DEVICE)
# Optimizer.
optimizer = optim.SGD(
[
{"params": [model.cam_pos], "lr": 1e-4}, # 1e-3
{"params": [model.cam_rot], "lr": 5e-6},
{"params": [model.cam_sensor], "lr": 1e-4},
]
)
overlay_img = cv2.putText(
overlay_img,
"Step %d" % (i),
(10, 40),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 0, 0),
2,
cv2.LINE_AA,
False,
)
cv2.imshow("overlay", overlay_img)
cv2.waitKey(1)
# Update.
loss = ((result - ref) ** 2).sum()
print("loss {}: {}".format(i, loss.item()))
loss.backward()
optimizer.step()
writer.close()
LOGGER.info("Writing video to `%s`.", path.abspath("cam.gif"))
writer = imageio.get_writer("cam.gif", format="gif", fps=25)
# Optimize.
for i in range(300):
optimizer.zero_grad()
result = model()
# Visualize.
result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
cv2.imshow("opt", result_im[:, :, ::-1])
writer.append_data(result_im)
overlay_img = np.ascontiguousarray(
((result * 0.5 + ref * 0.5).cpu().detach().numpy() * 255).astype(np.uint8)[
:, :, ::-1
]
)
overlay_img = cv2.putText(
overlay_img,
"Step %d" % (i),
(10, 40),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 0, 0),
2,
cv2.LINE_AA,
False,
)
cv2.imshow("overlay", overlay_img)
cv2.waitKey(1)
# Update.
loss = ((result - ref) ** 2).sum()
LOGGER.info("loss %d: %f", i, loss.item())
loss.backward()
optimizer.step()
writer.close()
LOGGER.info("Done.")
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
cli()