Support for multi-dimensional list_to_padded/padded_to_list.

Summary: Extends `list_to_padded`/`padded_to_list` to work for tensors with an arbitrary number of input dimensions.

Reviewed By: nikhilaravi, gkioxari

Differential Revision: D23813969

fbshipit-source-id: 52c212a2ecdb3c4dfb6ac47217715e07998f37f1
This commit is contained in:
David Novotny
2021-01-04 09:41:28 -08:00
committed by Facebook GitHub Bot
parent 0ba55a83ad
commit b4dea43963
2 changed files with 131 additions and 81 deletions

View File

@@ -9,42 +9,74 @@ from pytorch3d.structures import utils as struct_utils
class TestStructUtils(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
super().setUp()
torch.manual_seed(43)
def _check_list_to_padded_slices(self, x, x_padded, ndim):
N = len(x)
for i in range(N):
slices = [i]
for dim in range(ndim):
if x[i].nelement() == 0 and x[i].ndim == 1:
slice_ = slice(0, 0, 1)
else:
slice_ = slice(0, x[i].shape[dim], 1)
slices.append(slice_)
if x[i].nelement() == 0 and x[i].ndim == 1:
x_correct = x[i].new_zeros(*[[0] * ndim])
else:
x_correct = x[i]
self.assertClose(x_padded[slices], x_correct)
def test_list_to_padded(self):
device = torch.device("cuda:0")
N = 5
K = 20
ndim = 2
x = []
for _ in range(N):
dims = torch.randint(K, size=(ndim,)).tolist()
x.append(torch.rand(dims, device=device))
pad_size = [K] * ndim
x_padded = struct_utils.list_to_padded(
x, pad_size=pad_size, pad_value=0.0, equisized=False
)
for ndim in [1, 2, 3, 4]:
x = []
for _ in range(N):
dims = torch.randint(K, size=(ndim,)).tolist()
x.append(torch.rand(dims, device=device))
self.assertEqual(x_padded.shape[1], K)
self.assertEqual(x_padded.shape[2], K)
for i in range(N):
self.assertClose(x_padded[i, : x[i].shape[0], : x[i].shape[1]], x[i])
# set 0th element to an empty 1D tensor
x[0] = torch.tensor([], dtype=x[0].dtype, device=device)
# check for no pad size (defaults to max dimension)
x_padded = struct_utils.list_to_padded(x, pad_value=0.0, equisized=False)
max_size0 = max(y.shape[0] for y in x)
max_size1 = max(y.shape[1] for y in x)
self.assertEqual(x_padded.shape[1], max_size0)
self.assertEqual(x_padded.shape[2], max_size1)
for i in range(N):
self.assertClose(x_padded[i, : x[i].shape[0], : x[i].shape[1]], x[i])
# set 1st element to an empty tensor with correct number of dims
x[1] = x[1].new_zeros(*[[0] * ndim])
# check for equisized
x = [torch.rand((K, 10), device=device) for _ in range(N)]
x_padded = struct_utils.list_to_padded(x, equisized=True)
self.assertClose(x_padded, torch.stack(x, 0))
pad_size = [K] * ndim
x_padded = struct_utils.list_to_padded(
x, pad_size=pad_size, pad_value=0.0, equisized=False
)
for dim in range(ndim):
self.assertEqual(x_padded.shape[dim + 1], K)
self._check_list_to_padded_slices(x, x_padded, ndim)
# check for no pad size (defaults to max dimension)
x_padded = struct_utils.list_to_padded(x, pad_value=0.0, equisized=False)
max_sizes = (
max(
(0 if (y.nelement() == 0 and y.ndim == 1) else y.shape[dim])
for y in x
)
for dim in range(ndim)
)
for dim, max_size in enumerate(max_sizes):
self.assertEqual(x_padded.shape[dim + 1], max_size)
self._check_list_to_padded_slices(x, x_padded, ndim)
# check for equisized
x = [torch.rand((K, *([10] * (ndim - 1))), device=device) for _ in range(N)]
x_padded = struct_utils.list_to_padded(x, equisized=True)
self.assertClose(x_padded, torch.stack(x, 0))
# catch ValueError for invalid dimensions
with self.assertRaisesRegex(ValueError, "Pad size must"):
pad_size = [K] * 4
pad_size = [K] * (ndim + 1)
struct_utils.list_to_padded(
x, pad_size=pad_size, pad_value=0.0, equisized=False
)
@@ -56,7 +88,7 @@ class TestStructUtils(TestCaseMixin, unittest.TestCase):
dims = torch.randint(K, size=(ndim,)).tolist()
x.append(torch.rand(dims, device=device))
pad_size = [K] * 2
with self.assertRaisesRegex(ValueError, "Supports only"):
with self.assertRaisesRegex(ValueError, "Pad size must"):
x_padded = struct_utils.list_to_padded(
x, pad_size=pad_size, pad_value=0.0, equisized=False
)
@@ -66,27 +98,29 @@ class TestStructUtils(TestCaseMixin, unittest.TestCase):
N = 5
K = 20
ndim = 2
dims = [K] * ndim
x = torch.rand([N] + dims, device=device)
x_list = struct_utils.padded_to_list(x)
for i in range(N):
self.assertClose(x_list[i], x[i])
for ndim in (2, 3, 4):
split_size = torch.randint(1, K, size=(N,)).tolist()
x_list = struct_utils.padded_to_list(x, split_size)
for i in range(N):
self.assertClose(x_list[i], x[i, : split_size[i]])
dims = [K] * ndim
x = torch.rand([N] + dims, device=device)
split_size = torch.randint(1, K, size=(2 * N,)).view(N, 2).unbind(0)
x_list = struct_utils.padded_to_list(x, split_size)
for i in range(N):
self.assertClose(x_list[i], x[i, : split_size[i][0], : split_size[i][1]])
x_list = struct_utils.padded_to_list(x)
for i in range(N):
self.assertClose(x_list[i], x[i])
with self.assertRaisesRegex(ValueError, "Supports only"):
x = torch.rand((N, K, K, K, K), device=device)
split_size = torch.randint(1, K, size=(N,)).tolist()
struct_utils.padded_to_list(x, split_size)
split_size = torch.randint(1, K, size=(N, ndim)).unbind(0)
x_list = struct_utils.padded_to_list(x, split_size)
for i in range(N):
slices = [i]
for dim in range(ndim):
slices.append(slice(0, split_size[i][dim], 1))
self.assertClose(x_list[i], x[slices])
# split size is a list of ints
split_size = [int(z) for z in torch.randint(1, K, size=(N,)).unbind(0)]
x_list = struct_utils.padded_to_list(x, split_size)
for i in range(N):
self.assertClose(x_list[i], x[i][: split_size[i]])
def test_padded_to_packed(self):
device = torch.device("cuda:0")
@@ -160,7 +194,7 @@ class TestStructUtils(TestCaseMixin, unittest.TestCase):
with self.assertRaisesRegex(ValueError, "Supports only"):
x = torch.rand((N, K, K, K, K), device=device)
split_size = torch.randint(1, K, size=(N,)).tolist()
struct_utils.padded_to_list(x, split_size)
struct_utils.padded_to_packed(x, split_size=split_size)
def test_list_to_packed(self):
device = torch.device("cuda:0")